This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an alternate definition of the rank function. Definition of BellMachover p. 478. (Contributed by NM, 8-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankval2 | ⊢ ( 𝐴 ∈ 𝐵 → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankvalg | ⊢ ( 𝐴 ∈ 𝐵 → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) | |
| 2 | r1suc | ⊢ ( 𝑥 ∈ On → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
| 4 | fvex | ⊢ ( 𝑅1 ‘ 𝑥 ) ∈ V | |
| 5 | 4 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 6 | 3 5 | bitrdi | ⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 7 | 6 | rabbiia | ⊢ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = { 𝑥 ∈ On ∣ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) } |
| 8 | 7 | inteqi | ⊢ ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) } |
| 9 | 1 8 | eqtrdi | ⊢ ( 𝐴 ∈ 𝐵 → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) } ) |