This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of Jech p. 72. Also a special case of Theorem 7V(b) of Enderton p. 204. (Contributed by NM, 12-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | |- A e. _V |
|
| Assertion | rankval4 | |- ( rank ` A ) = U_ x e. A suc ( rank ` x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | |- A e. _V |
|
| 2 | nfcv | |- F/_ x A |
|
| 3 | nfcv | |- F/_ x R1 |
|
| 4 | nfiu1 | |- F/_ x U_ x e. A suc ( rank ` x ) |
|
| 5 | 3 4 | nffv | |- F/_ x ( R1 ` U_ x e. A suc ( rank ` x ) ) |
| 6 | 2 5 | dfssf | |- ( A C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) <-> A. x ( x e. A -> x e. ( R1 ` U_ x e. A suc ( rank ` x ) ) ) ) |
| 7 | vex | |- x e. _V |
|
| 8 | 7 | rankid | |- x e. ( R1 ` suc ( rank ` x ) ) |
| 9 | ssiun2 | |- ( x e. A -> suc ( rank ` x ) C_ U_ x e. A suc ( rank ` x ) ) |
|
| 10 | rankon | |- ( rank ` x ) e. On |
|
| 11 | 10 | onsuci | |- suc ( rank ` x ) e. On |
| 12 | 11 | rgenw | |- A. x e. A suc ( rank ` x ) e. On |
| 13 | iunon | |- ( ( A e. _V /\ A. x e. A suc ( rank ` x ) e. On ) -> U_ x e. A suc ( rank ` x ) e. On ) |
|
| 14 | 1 12 13 | mp2an | |- U_ x e. A suc ( rank ` x ) e. On |
| 15 | r1ord3 | |- ( ( suc ( rank ` x ) e. On /\ U_ x e. A suc ( rank ` x ) e. On ) -> ( suc ( rank ` x ) C_ U_ x e. A suc ( rank ` x ) -> ( R1 ` suc ( rank ` x ) ) C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) ) ) |
|
| 16 | 11 14 15 | mp2an | |- ( suc ( rank ` x ) C_ U_ x e. A suc ( rank ` x ) -> ( R1 ` suc ( rank ` x ) ) C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) ) |
| 17 | 9 16 | syl | |- ( x e. A -> ( R1 ` suc ( rank ` x ) ) C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) ) |
| 18 | 17 | sseld | |- ( x e. A -> ( x e. ( R1 ` suc ( rank ` x ) ) -> x e. ( R1 ` U_ x e. A suc ( rank ` x ) ) ) ) |
| 19 | 8 18 | mpi | |- ( x e. A -> x e. ( R1 ` U_ x e. A suc ( rank ` x ) ) ) |
| 20 | 6 19 | mpgbir | |- A C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) |
| 21 | fvex | |- ( R1 ` U_ x e. A suc ( rank ` x ) ) e. _V |
|
| 22 | 21 | rankss | |- ( A C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) -> ( rank ` A ) C_ ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) ) |
| 23 | 20 22 | ax-mp | |- ( rank ` A ) C_ ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) |
| 24 | r1ord3 | |- ( ( U_ x e. A suc ( rank ` x ) e. On /\ y e. On ) -> ( U_ x e. A suc ( rank ` x ) C_ y -> ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) ) ) |
|
| 25 | 14 24 | mpan | |- ( y e. On -> ( U_ x e. A suc ( rank ` x ) C_ y -> ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) ) ) |
| 26 | 25 | ss2rabi | |- { y e. On | U_ x e. A suc ( rank ` x ) C_ y } C_ { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } |
| 27 | intss | |- ( { y e. On | U_ x e. A suc ( rank ` x ) C_ y } C_ { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } -> |^| { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } C_ |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } ) |
|
| 28 | 26 27 | ax-mp | |- |^| { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } C_ |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } |
| 29 | rankval2 | |- ( ( R1 ` U_ x e. A suc ( rank ` x ) ) e. _V -> ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) = |^| { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } ) |
|
| 30 | 21 29 | ax-mp | |- ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) = |^| { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } |
| 31 | intmin | |- ( U_ x e. A suc ( rank ` x ) e. On -> |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } = U_ x e. A suc ( rank ` x ) ) |
|
| 32 | 14 31 | ax-mp | |- |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } = U_ x e. A suc ( rank ` x ) |
| 33 | 32 | eqcomi | |- U_ x e. A suc ( rank ` x ) = |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } |
| 34 | 28 30 33 | 3sstr4i | |- ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) C_ U_ x e. A suc ( rank ` x ) |
| 35 | 23 34 | sstri | |- ( rank ` A ) C_ U_ x e. A suc ( rank ` x ) |
| 36 | iunss | |- ( U_ x e. A suc ( rank ` x ) C_ ( rank ` A ) <-> A. x e. A suc ( rank ` x ) C_ ( rank ` A ) ) |
|
| 37 | 1 | rankel | |- ( x e. A -> ( rank ` x ) e. ( rank ` A ) ) |
| 38 | rankon | |- ( rank ` A ) e. On |
|
| 39 | 10 38 | onsucssi | |- ( ( rank ` x ) e. ( rank ` A ) <-> suc ( rank ` x ) C_ ( rank ` A ) ) |
| 40 | 37 39 | sylib | |- ( x e. A -> suc ( rank ` x ) C_ ( rank ` A ) ) |
| 41 | 36 40 | mprgbir | |- U_ x e. A suc ( rank ` x ) C_ ( rank ` A ) |
| 42 | 35 41 | eqssi | |- ( rank ` A ) = U_ x e. A suc ( rank ` x ) |