This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994) (Revised by Andrew Salmon, 27-Aug-2011) Avoid ax-13 . (Revised by GG, 19-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfssf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| dfssf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | dfssf | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | dfssf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 ) ) | |
| 4 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
| 5 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐵 |
| 6 | 4 5 | nfim | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 ) |
| 7 | nfv | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) | |
| 8 | eleq1w | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 9 | eleq1w | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
| 11 | 6 7 10 | cbvalv1 | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 12 | 3 11 | bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |