This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). This variant of rankval does not use Regularity, and so requires the assumption that A is in the range of R1 . (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 10-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankvalb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rank | ⊢ rank = ( 𝑦 ∈ V ↦ ∩ { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) | |
| 2 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) | |
| 3 | 2 | rabbidv | ⊢ ( 𝑦 = 𝐴 → { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 4 | 3 | inteqd | ⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 5 | elex | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ V ) | |
| 6 | rankwflemb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) | |
| 7 | intexrab | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ∈ V ) | |
| 8 | 6 7 | sylbb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ∈ V ) |
| 9 | 1 4 5 8 | fvmptd3 | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |