This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| Assertion | radcnv0 | ⊢ ( 𝜑 → 0 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 3 | fveq2 | ⊢ ( 𝑟 = 0 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 0 ) ) | |
| 4 | 3 | seqeq3d | ⊢ ( 𝑟 = 0 → seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) = seq 0 ( + , ( 𝐺 ‘ 0 ) ) ) |
| 5 | 4 | eleq1d | ⊢ ( 𝑟 = 0 → ( seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝐺 ‘ 0 ) ) ∈ dom ⇝ ) ) |
| 6 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 7 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 8 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 9 | snfi | ⊢ { 0 } ∈ Fin | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → { 0 } ∈ Fin ) |
| 11 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 13 | 12 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ ℕ0 ) |
| 14 | ifid | ⊢ if ( 𝑘 ∈ { 0 } , ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) , ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) ) = ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) | |
| 15 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 16 | 1 | pserval2 | ⊢ ( ( 0 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
| 17 | 15 16 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ { 0 } ) → ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 20 | elnn0 | ⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) | |
| 21 | 19 20 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 22 | 21 | ord | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ¬ 𝑘 ∈ ℕ → 𝑘 = 0 ) ) |
| 23 | velsn | ⊢ ( 𝑘 ∈ { 0 } ↔ 𝑘 = 0 ) | |
| 24 | 22 23 | imbitrrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ¬ 𝑘 ∈ ℕ → 𝑘 ∈ { 0 } ) ) |
| 25 | 24 | con1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ¬ 𝑘 ∈ { 0 } → 𝑘 ∈ ℕ ) ) |
| 26 | 25 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ { 0 } ) → 𝑘 ∈ ℕ ) |
| 27 | 26 | 0expd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ { 0 } ) → ( 0 ↑ 𝑘 ) = 0 ) |
| 28 | 27 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ { 0 } ) → ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) · 0 ) ) |
| 29 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ { 0 } ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 31 | 30 | mul01d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ { 0 } ) → ( ( 𝐴 ‘ 𝑘 ) · 0 ) = 0 ) |
| 32 | 18 28 31 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ { 0 } ) → ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) = 0 ) |
| 33 | 32 | ifeq2da | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 ∈ { 0 } , ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) , ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) ) = if ( 𝑘 ∈ { 0 } , ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) , 0 ) ) |
| 34 | 14 33 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) , 0 ) ) |
| 35 | 13 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 } ) → 𝑘 ∈ ℕ0 ) |
| 36 | 1 2 15 | psergf | ⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) : ℕ0 ⟶ ℂ ) |
| 37 | 36 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) |
| 38 | 35 37 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 } ) → ( ( 𝐺 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) |
| 39 | 7 8 10 13 34 38 | fsumcvg3 | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 0 ) ) ∈ dom ⇝ ) |
| 40 | 5 6 39 | elrabd | ⊢ ( 𝜑 → 0 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ) |