This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| radcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| Assertion | radcnv0 | |- ( ph -> 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | radcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 3 | fveq2 | |- ( r = 0 -> ( G ` r ) = ( G ` 0 ) ) |
|
| 4 | 3 | seqeq3d | |- ( r = 0 -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` 0 ) ) ) |
| 5 | 4 | eleq1d | |- ( r = 0 -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` 0 ) ) e. dom ~~> ) ) |
| 6 | 0red | |- ( ph -> 0 e. RR ) |
|
| 7 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 8 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 9 | snfi | |- { 0 } e. Fin |
|
| 10 | 9 | a1i | |- ( ph -> { 0 } e. Fin ) |
| 11 | 0nn0 | |- 0 e. NN0 |
|
| 12 | 11 | a1i | |- ( ph -> 0 e. NN0 ) |
| 13 | 12 | snssd | |- ( ph -> { 0 } C_ NN0 ) |
| 14 | ifid | |- if ( k e. { 0 } , ( ( G ` 0 ) ` k ) , ( ( G ` 0 ) ` k ) ) = ( ( G ` 0 ) ` k ) |
|
| 15 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 16 | 1 | pserval2 | |- ( ( 0 e. CC /\ k e. NN0 ) -> ( ( G ` 0 ) ` k ) = ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 17 | 15 16 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( G ` 0 ) ` k ) = ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 18 | 17 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( ( G ` 0 ) ` k ) = ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 19 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
|
| 20 | elnn0 | |- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
|
| 21 | 19 20 | sylib | |- ( ( ph /\ k e. NN0 ) -> ( k e. NN \/ k = 0 ) ) |
| 22 | 21 | ord | |- ( ( ph /\ k e. NN0 ) -> ( -. k e. NN -> k = 0 ) ) |
| 23 | velsn | |- ( k e. { 0 } <-> k = 0 ) |
|
| 24 | 22 23 | imbitrrdi | |- ( ( ph /\ k e. NN0 ) -> ( -. k e. NN -> k e. { 0 } ) ) |
| 25 | 24 | con1d | |- ( ( ph /\ k e. NN0 ) -> ( -. k e. { 0 } -> k e. NN ) ) |
| 26 | 25 | imp | |- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> k e. NN ) |
| 27 | 26 | 0expd | |- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( 0 ^ k ) = 0 ) |
| 28 | 27 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` k ) x. 0 ) ) |
| 29 | 2 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 30 | 29 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( A ` k ) e. CC ) |
| 31 | 30 | mul01d | |- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( ( A ` k ) x. 0 ) = 0 ) |
| 32 | 18 28 31 | 3eqtrd | |- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( ( G ` 0 ) ` k ) = 0 ) |
| 33 | 32 | ifeq2da | |- ( ( ph /\ k e. NN0 ) -> if ( k e. { 0 } , ( ( G ` 0 ) ` k ) , ( ( G ` 0 ) ` k ) ) = if ( k e. { 0 } , ( ( G ` 0 ) ` k ) , 0 ) ) |
| 34 | 14 33 | eqtr3id | |- ( ( ph /\ k e. NN0 ) -> ( ( G ` 0 ) ` k ) = if ( k e. { 0 } , ( ( G ` 0 ) ` k ) , 0 ) ) |
| 35 | 13 | sselda | |- ( ( ph /\ k e. { 0 } ) -> k e. NN0 ) |
| 36 | 1 2 15 | psergf | |- ( ph -> ( G ` 0 ) : NN0 --> CC ) |
| 37 | 36 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( ( G ` 0 ) ` k ) e. CC ) |
| 38 | 35 37 | syldan | |- ( ( ph /\ k e. { 0 } ) -> ( ( G ` 0 ) ` k ) e. CC ) |
| 39 | 7 8 10 13 34 38 | fsumcvg3 | |- ( ph -> seq 0 ( + , ( G ` 0 ) ) e. dom ~~> ) |
| 40 | 5 6 39 | elrabd | |- ( ph -> 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |