This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcvg3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| fsumcvg3.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| fsumcvg3.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsumcvg3.4 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | ||
| fsumcvg3.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | ||
| fsumcvg3.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fsumcvg3 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcvg3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | fsumcvg3.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | fsumcvg3.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fsumcvg3.4 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | |
| 5 | fsumcvg3.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 6 | fsumcvg3.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 7 | sseq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ↔ ∅ ⊆ ( 𝑀 ... 𝑛 ) ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝐴 = ∅ → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∅ ⊆ ( 𝑀 ... 𝑛 ) ) ) |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ 𝑍 ) |
| 10 | 9 1 | sseqtrdi | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 | ltso | ⊢ < Or ℝ | |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 14 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 15 | zssre | ⊢ ℤ ⊆ ℝ | |
| 16 | 14 15 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 17 | 1 16 | eqsstri | ⊢ 𝑍 ⊆ ℝ |
| 18 | 9 17 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℝ ) |
| 19 | 12 13 18 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ ) ) |
| 20 | fisupcl | ⊢ ( ( < Or ℝ ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ ) ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) | |
| 21 | 11 19 20 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 22 | 10 21 | sseldd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → sup ( 𝐴 , ℝ , < ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 23 | fimaxre2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑘 ∈ ℝ ∀ 𝑛 ∈ 𝐴 𝑛 ≤ 𝑘 ) | |
| 24 | 18 12 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑘 ∈ ℝ ∀ 𝑛 ∈ 𝐴 𝑛 ≤ 𝑘 ) |
| 25 | 18 13 24 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑛 ∈ 𝐴 𝑛 ≤ 𝑘 ) ) |
| 26 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑛 ∈ 𝐴 𝑛 ≤ 𝑘 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 27 | 25 26 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 28 | 10 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 29 | 14 22 | sselid | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → sup ( 𝐴 , ℝ , < ) ∈ ℤ ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℤ ) |
| 31 | elfz5 | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ sup ( 𝐴 , ℝ , < ) ∈ ℤ ) → ( 𝑘 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ↔ 𝑘 ≤ sup ( 𝐴 , ℝ , < ) ) ) | |
| 32 | 28 30 31 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ↔ 𝑘 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 33 | 27 32 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) |
| 34 | 33 | ex | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) ) |
| 35 | 34 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) |
| 36 | oveq2 | ⊢ ( 𝑛 = sup ( 𝐴 , ℝ , < ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) | |
| 37 | 36 | sseq2d | ⊢ ( 𝑛 = sup ( 𝐴 , ℝ , < ) → ( 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ↔ 𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) ) |
| 38 | 37 | rspcev | ⊢ ( ( sup ( 𝐴 , ℝ , < ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) |
| 39 | 22 35 38 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) |
| 40 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 41 | 2 40 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 42 | 0ss | ⊢ ∅ ⊆ ( 𝑀 ... 𝑀 ) | |
| 43 | oveq2 | ⊢ ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) ) | |
| 44 | 43 | sseq2d | ⊢ ( 𝑛 = 𝑀 → ( ∅ ⊆ ( 𝑀 ... 𝑛 ) ↔ ∅ ⊆ ( 𝑀 ... 𝑀 ) ) ) |
| 45 | 44 | rspcev | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ∅ ⊆ ( 𝑀 ... 𝑀 ) ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∅ ⊆ ( 𝑀 ... 𝑛 ) ) |
| 46 | 41 42 45 | sylancl | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∅ ⊆ ( 𝑀 ... 𝑛 ) ) |
| 47 | 8 39 46 | pm2.61ne | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) |
| 48 | 1 | eleq2i | ⊢ ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 49 | 48 5 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 50 | 49 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 51 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 52 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 53 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) ) → 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) | |
| 54 | 50 51 52 53 | fsumcvg2 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) ) → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 55 | climrel | ⊢ Rel ⇝ | |
| 56 | 55 | releldmi | ⊢ ( seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 57 | 54 56 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ⊆ ( 𝑀 ... 𝑛 ) ) ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 58 | 47 57 | rexlimddv | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |