This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004) (Proof shortened by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1pwcl | |- ( Lim B -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elwf | |- ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |
|
| 2 | elfvdm | |- ( A e. ( R1 ` B ) -> B e. dom R1 ) |
|
| 3 | 1 2 | jca | |- ( A e. ( R1 ` B ) -> ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) |
| 4 | 3 | a1i | |- ( Lim B -> ( A e. ( R1 ` B ) -> ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) ) |
| 5 | r1elwf | |- ( ~P A e. ( R1 ` B ) -> ~P A e. U. ( R1 " On ) ) |
|
| 6 | pwwf | |- ( A e. U. ( R1 " On ) <-> ~P A e. U. ( R1 " On ) ) |
|
| 7 | 5 6 | sylibr | |- ( ~P A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |
| 8 | elfvdm | |- ( ~P A e. ( R1 ` B ) -> B e. dom R1 ) |
|
| 9 | 7 8 | jca | |- ( ~P A e. ( R1 ` B ) -> ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) |
| 10 | 9 | a1i | |- ( Lim B -> ( ~P A e. ( R1 ` B ) -> ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) ) |
| 11 | limsuc | |- ( Lim B -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. B ) ) |
|
| 12 | 11 | adantr | |- ( ( Lim B /\ ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. B ) ) |
| 13 | rankpwi | |- ( A e. U. ( R1 " On ) -> ( rank ` ~P A ) = suc ( rank ` A ) ) |
|
| 14 | 13 | ad2antrl | |- ( ( Lim B /\ ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) -> ( rank ` ~P A ) = suc ( rank ` A ) ) |
| 15 | 14 | eleq1d | |- ( ( Lim B /\ ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) -> ( ( rank ` ~P A ) e. B <-> suc ( rank ` A ) e. B ) ) |
| 16 | 12 15 | bitr4d | |- ( ( Lim B /\ ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |
| 17 | rankr1ag | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
|
| 18 | 17 | adantl | |- ( ( Lim B /\ ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
| 19 | rankr1ag | |- ( ( ~P A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ~P A e. ( R1 ` B ) <-> ( rank ` ~P A ) e. B ) ) |
|
| 20 | 6 19 | sylanb | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ~P A e. ( R1 ` B ) <-> ( rank ` ~P A ) e. B ) ) |
| 21 | 20 | adantl | |- ( ( Lim B /\ ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) -> ( ~P A e. ( R1 ` B ) <-> ( rank ` ~P A ) e. B ) ) |
| 22 | 16 18 21 | 3bitr4d | |- ( ( Lim B /\ ( A e. U. ( R1 " On ) /\ B e. dom R1 ) ) -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` B ) ) ) |
| 23 | 22 | ex | |- ( Lim B -> ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` B ) ) ) ) |
| 24 | 4 10 23 | pm5.21ndd | |- ( Lim B -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` B ) ) ) |