This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusring2.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusring2.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusring2.p | |- .+ = ( +g ` R ) |
||
| qusring2.t | |- .x. = ( .r ` R ) |
||
| qusring2.o | |- .1. = ( 1r ` R ) |
||
| qusring2.r | |- ( ph -> .~ Er V ) |
||
| qusring2.e1 | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .+ b ) .~ ( p .+ q ) ) ) |
||
| qusring2.e2 | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
||
| qusring2.x | |- ( ph -> R e. Ring ) |
||
| Assertion | qusring2 | |- ( ph -> ( U e. Ring /\ [ .1. ] .~ = ( 1r ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring2.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusring2.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusring2.p | |- .+ = ( +g ` R ) |
|
| 4 | qusring2.t | |- .x. = ( .r ` R ) |
|
| 5 | qusring2.o | |- .1. = ( 1r ` R ) |
|
| 6 | qusring2.r | |- ( ph -> .~ Er V ) |
|
| 7 | qusring2.e1 | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .+ b ) .~ ( p .+ q ) ) ) |
|
| 8 | qusring2.e2 | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
|
| 9 | qusring2.x | |- ( ph -> R e. Ring ) |
|
| 10 | eqid | |- ( u e. V |-> [ u ] .~ ) = ( u e. V |-> [ u ] .~ ) |
|
| 11 | fvex | |- ( Base ` R ) e. _V |
|
| 12 | 2 11 | eqeltrdi | |- ( ph -> V e. _V ) |
| 13 | erex | |- ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) |
|
| 14 | 6 12 13 | sylc | |- ( ph -> .~ e. _V ) |
| 15 | 1 2 10 14 9 | qusval | |- ( ph -> U = ( ( u e. V |-> [ u ] .~ ) "s R ) ) |
| 16 | 1 2 10 14 9 | quslem | |- ( ph -> ( u e. V |-> [ u ] .~ ) : V -onto-> ( V /. .~ ) ) |
| 17 | 9 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> R e. Ring ) |
| 18 | simprl | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. V ) |
|
| 19 | 2 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> V = ( Base ` R ) ) |
| 20 | 18 19 | eleqtrd | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. ( Base ` R ) ) |
| 21 | simprr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. V ) |
|
| 22 | 21 19 | eleqtrd | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. ( Base ` R ) ) |
| 23 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 24 | 23 3 | ringacl | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x .+ y ) e. ( Base ` R ) ) |
| 25 | 17 20 22 24 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. ( Base ` R ) ) |
| 26 | 25 19 | eleqtrrd | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 27 | 6 12 10 26 7 | ercpbl | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( u e. V |-> [ u ] .~ ) ` a ) = ( ( u e. V |-> [ u ] .~ ) ` p ) /\ ( ( u e. V |-> [ u ] .~ ) ` b ) = ( ( u e. V |-> [ u ] .~ ) ` q ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( a .+ b ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( p .+ q ) ) ) ) |
| 28 | 23 4 | ringcl | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x .x. y ) e. ( Base ` R ) ) |
| 29 | 17 20 22 28 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. ( Base ` R ) ) |
| 30 | 29 19 | eleqtrrd | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. V ) |
| 31 | 6 12 10 30 8 | ercpbl | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( u e. V |-> [ u ] .~ ) ` a ) = ( ( u e. V |-> [ u ] .~ ) ` p ) /\ ( ( u e. V |-> [ u ] .~ ) ` b ) = ( ( u e. V |-> [ u ] .~ ) ` q ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( a .x. b ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( p .x. q ) ) ) ) |
| 32 | 15 2 3 4 5 16 27 31 9 | imasring | |- ( ph -> ( U e. Ring /\ ( ( u e. V |-> [ u ] .~ ) ` .1. ) = ( 1r ` U ) ) ) |
| 33 | 6 12 10 | divsfval | |- ( ph -> ( ( u e. V |-> [ u ] .~ ) ` .1. ) = [ .1. ] .~ ) |
| 34 | 33 | eqcomd | |- ( ph -> [ .1. ] .~ = ( ( u e. V |-> [ u ] .~ ) ` .1. ) ) |
| 35 | 34 | eqeq1d | |- ( ph -> ( [ .1. ] .~ = ( 1r ` U ) <-> ( ( u e. V |-> [ u ] .~ ) ` .1. ) = ( 1r ` U ) ) ) |
| 36 | 35 | anbi2d | |- ( ph -> ( ( U e. Ring /\ [ .1. ] .~ = ( 1r ` U ) ) <-> ( U e. Ring /\ ( ( u e. V |-> [ u ] .~ ) ` .1. ) = ( 1r ` U ) ) ) ) |
| 37 | 32 36 | mpbird | |- ( ph -> ( U e. Ring /\ [ .1. ] .~ = ( 1r ` U ) ) ) |