This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If Y is a subgroup of the abelian group G , then H = G / Y is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qusabl.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| Assertion | qusabl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusabl.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| 2 | ablnsg | ⊢ ( 𝐺 ∈ Abel → ( NrmSGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝐺 ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝐺 ∈ Abel → ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 4 | 3 | biimpar | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 5 | 1 | qusgrp | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 6 | 4 5 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp ) |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 | elqs | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑆 ) ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝐺 ) 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ) |
| 9 | 1 | a1i | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) ) |
| 10 | eqidd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 11 | ovexd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ~QG 𝑆 ) ∈ V ) | |
| 12 | simpl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Abel ) | |
| 13 | 9 10 11 12 | qusbas | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑆 ) ) = ( Base ‘ 𝐻 ) ) |
| 14 | 13 | eleq2d | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑆 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 15 | 8 14 | bitr3id | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝐺 ) 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | 16 | elqs | ⊢ ( 𝑦 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑆 ) ) ↔ ∃ 𝑏 ∈ ( Base ‘ 𝐺 ) 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) |
| 18 | 13 | eleq2d | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑦 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑆 ) ) ↔ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
| 19 | 17 18 | bitr3id | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑏 ∈ ( Base ‘ 𝐺 ) 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ↔ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
| 20 | 15 19 | anbi12d | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ∃ 𝑎 ∈ ( Base ‘ 𝐺 ) 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ ∃ 𝑏 ∈ ( Base ‘ 𝐺 ) 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) ) |
| 21 | reeanv | ⊢ ( ∃ 𝑎 ∈ ( Base ‘ 𝐺 ) ∃ 𝑏 ∈ ( Base ‘ 𝐺 ) ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) ↔ ( ∃ 𝑎 ∈ ( Base ‘ 𝐺 ) 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ ∃ 𝑏 ∈ ( Base ‘ 𝐺 ) 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 23 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 24 | 22 23 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) |
| 25 | 24 | 3expb | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) |
| 26 | 25 | adantlr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) |
| 27 | 26 | eceq1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑆 ) = [ ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 28 | 4 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 29 | simprl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) | |
| 30 | simprr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑏 ∈ ( Base ‘ 𝐺 ) ) | |
| 31 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 32 | 1 22 23 31 | qusadd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 33 | 28 29 30 32 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 34 | 1 22 23 31 | qusadd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ) → ( [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 35 | 28 30 29 34 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 36 | 27 33 35 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) = ( [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ) ) |
| 37 | oveq12 | ⊢ ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) ) | |
| 38 | oveq12 | ⊢ ( ( 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ∧ 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = ( [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ) ) | |
| 39 | 38 | ancoms | ⊢ ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = ( [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ) ) |
| 40 | 37 39 | eqeq12d | ⊢ ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ↔ ( [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) = ( [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ) ) ) |
| 41 | 36 40 | syl5ibrcom | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 42 | 41 | rexlimdvva | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝐺 ) ∃ 𝑏 ∈ ( Base ‘ 𝐺 ) ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 43 | 21 42 | biimtrrid | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ∃ 𝑎 ∈ ( Base ‘ 𝐺 ) 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑆 ) ∧ ∃ 𝑏 ∈ ( Base ‘ 𝐺 ) 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 44 | 20 43 | sylbird | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 45 | 44 | ralrimivv | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) |
| 46 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 47 | 46 31 | isabl2 | ⊢ ( 𝐻 ∈ Abel ↔ ( 𝐻 ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 48 | 6 45 47 | sylanbrc | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Abel ) |