This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If Y is a subgroup of the abelian group G , then H = G / Y is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qusabl.h | |- H = ( G /s ( G ~QG S ) ) |
|
| Assertion | qusabl | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusabl.h | |- H = ( G /s ( G ~QG S ) ) |
|
| 2 | ablnsg | |- ( G e. Abel -> ( NrmSGrp ` G ) = ( SubGrp ` G ) ) |
|
| 3 | 2 | eleq2d | |- ( G e. Abel -> ( S e. ( NrmSGrp ` G ) <-> S e. ( SubGrp ` G ) ) ) |
| 4 | 3 | biimpar | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> S e. ( NrmSGrp ` G ) ) |
| 5 | 1 | qusgrp | |- ( S e. ( NrmSGrp ` G ) -> H e. Grp ) |
| 6 | 4 5 | syl | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Grp ) |
| 7 | vex | |- x e. _V |
|
| 8 | 7 | elqs | |- ( x e. ( ( Base ` G ) /. ( G ~QG S ) ) <-> E. a e. ( Base ` G ) x = [ a ] ( G ~QG S ) ) |
| 9 | 1 | a1i | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H = ( G /s ( G ~QG S ) ) ) |
| 10 | eqidd | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( Base ` G ) = ( Base ` G ) ) |
|
| 11 | ovexd | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( G ~QG S ) e. _V ) |
|
| 12 | simpl | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> G e. Abel ) |
|
| 13 | 9 10 11 12 | qusbas | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( ( Base ` G ) /. ( G ~QG S ) ) = ( Base ` H ) ) |
| 14 | 13 | eleq2d | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( x e. ( ( Base ` G ) /. ( G ~QG S ) ) <-> x e. ( Base ` H ) ) ) |
| 15 | 8 14 | bitr3id | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( E. a e. ( Base ` G ) x = [ a ] ( G ~QG S ) <-> x e. ( Base ` H ) ) ) |
| 16 | vex | |- y e. _V |
|
| 17 | 16 | elqs | |- ( y e. ( ( Base ` G ) /. ( G ~QG S ) ) <-> E. b e. ( Base ` G ) y = [ b ] ( G ~QG S ) ) |
| 18 | 13 | eleq2d | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( y e. ( ( Base ` G ) /. ( G ~QG S ) ) <-> y e. ( Base ` H ) ) ) |
| 19 | 17 18 | bitr3id | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( E. b e. ( Base ` G ) y = [ b ] ( G ~QG S ) <-> y e. ( Base ` H ) ) ) |
| 20 | 15 19 | anbi12d | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( ( E. a e. ( Base ` G ) x = [ a ] ( G ~QG S ) /\ E. b e. ( Base ` G ) y = [ b ] ( G ~QG S ) ) <-> ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) ) |
| 21 | reeanv | |- ( E. a e. ( Base ` G ) E. b e. ( Base ` G ) ( x = [ a ] ( G ~QG S ) /\ y = [ b ] ( G ~QG S ) ) <-> ( E. a e. ( Base ` G ) x = [ a ] ( G ~QG S ) /\ E. b e. ( Base ` G ) y = [ b ] ( G ~QG S ) ) ) |
|
| 22 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 23 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 24 | 22 23 | ablcom | |- ( ( G e. Abel /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` G ) b ) = ( b ( +g ` G ) a ) ) |
| 25 | 24 | 3expb | |- ( ( G e. Abel /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( b ( +g ` G ) a ) ) |
| 26 | 25 | adantlr | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( b ( +g ` G ) a ) ) |
| 27 | 26 | eceq1d | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> [ ( a ( +g ` G ) b ) ] ( G ~QG S ) = [ ( b ( +g ` G ) a ) ] ( G ~QG S ) ) |
| 28 | 4 | adantr | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> S e. ( NrmSGrp ` G ) ) |
| 29 | simprl | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> a e. ( Base ` G ) ) |
|
| 30 | simprr | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> b e. ( Base ` G ) ) |
|
| 31 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 32 | 1 22 23 31 | qusadd | |- ( ( S e. ( NrmSGrp ` G ) /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( [ a ] ( G ~QG S ) ( +g ` H ) [ b ] ( G ~QG S ) ) = [ ( a ( +g ` G ) b ) ] ( G ~QG S ) ) |
| 33 | 28 29 30 32 | syl3anc | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( [ a ] ( G ~QG S ) ( +g ` H ) [ b ] ( G ~QG S ) ) = [ ( a ( +g ` G ) b ) ] ( G ~QG S ) ) |
| 34 | 1 22 23 31 | qusadd | |- ( ( S e. ( NrmSGrp ` G ) /\ b e. ( Base ` G ) /\ a e. ( Base ` G ) ) -> ( [ b ] ( G ~QG S ) ( +g ` H ) [ a ] ( G ~QG S ) ) = [ ( b ( +g ` G ) a ) ] ( G ~QG S ) ) |
| 35 | 28 30 29 34 | syl3anc | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( [ b ] ( G ~QG S ) ( +g ` H ) [ a ] ( G ~QG S ) ) = [ ( b ( +g ` G ) a ) ] ( G ~QG S ) ) |
| 36 | 27 33 35 | 3eqtr4d | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( [ a ] ( G ~QG S ) ( +g ` H ) [ b ] ( G ~QG S ) ) = ( [ b ] ( G ~QG S ) ( +g ` H ) [ a ] ( G ~QG S ) ) ) |
| 37 | oveq12 | |- ( ( x = [ a ] ( G ~QG S ) /\ y = [ b ] ( G ~QG S ) ) -> ( x ( +g ` H ) y ) = ( [ a ] ( G ~QG S ) ( +g ` H ) [ b ] ( G ~QG S ) ) ) |
|
| 38 | oveq12 | |- ( ( y = [ b ] ( G ~QG S ) /\ x = [ a ] ( G ~QG S ) ) -> ( y ( +g ` H ) x ) = ( [ b ] ( G ~QG S ) ( +g ` H ) [ a ] ( G ~QG S ) ) ) |
|
| 39 | 38 | ancoms | |- ( ( x = [ a ] ( G ~QG S ) /\ y = [ b ] ( G ~QG S ) ) -> ( y ( +g ` H ) x ) = ( [ b ] ( G ~QG S ) ( +g ` H ) [ a ] ( G ~QG S ) ) ) |
| 40 | 37 39 | eqeq12d | |- ( ( x = [ a ] ( G ~QG S ) /\ y = [ b ] ( G ~QG S ) ) -> ( ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) <-> ( [ a ] ( G ~QG S ) ( +g ` H ) [ b ] ( G ~QG S ) ) = ( [ b ] ( G ~QG S ) ( +g ` H ) [ a ] ( G ~QG S ) ) ) ) |
| 41 | 36 40 | syl5ibrcom | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( ( x = [ a ] ( G ~QG S ) /\ y = [ b ] ( G ~QG S ) ) -> ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 42 | 41 | rexlimdvva | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( E. a e. ( Base ` G ) E. b e. ( Base ` G ) ( x = [ a ] ( G ~QG S ) /\ y = [ b ] ( G ~QG S ) ) -> ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 43 | 21 42 | biimtrrid | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( ( E. a e. ( Base ` G ) x = [ a ] ( G ~QG S ) /\ E. b e. ( Base ` G ) y = [ b ] ( G ~QG S ) ) -> ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 44 | 20 43 | sylbird | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) -> ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 45 | 44 | ralrimivv | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) |
| 46 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 47 | 46 31 | isabl2 | |- ( H e. Abel <-> ( H e. Grp /\ A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 48 | 6 45 47 | sylanbrc | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Abel ) |