This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring ( qusring analog). (Contributed by AV, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qus2idrng.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| qus2idrng.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | ||
| Assertion | qus2idrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑈 ∈ Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus2idrng.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| 2 | qus2idrng.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | |
| 3 | 1 | a1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) ) |
| 4 | eqidd | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 7 | simp3 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( 𝑅 ~QG 𝑆 ) = ( 𝑅 ~QG 𝑆 ) | |
| 10 | 8 9 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝑆 ) Er ( Base ‘ 𝑅 ) ) |
| 11 | 7 10 | syl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝑆 ) Er ( Base ‘ 𝑅 ) ) |
| 12 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
| 14 | ablnsg | ⊢ ( 𝑅 ∈ Abel → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
| 16 | 7 15 | eleqtrrd | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 17 | 8 9 5 | eqgcpbl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 18 | 16 17 | syl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 19 | 8 9 2 6 | 2idlcpblrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ) ) |
| 20 | simp1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Rng ) | |
| 21 | 3 4 5 6 11 18 19 20 | qusrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑈 ∈ Rng ) |