This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient structure of a non-unital ring is a non-unital ring ( qusring2 analog). (Contributed by AV, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusrng.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusrng.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusrng.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| qusrng.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| qusrng.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | ||
| qusrng.e1 | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 + 𝑏 ) ∼ ( 𝑝 + 𝑞 ) ) ) | ||
| qusrng.e2 | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) | ||
| qusrng.x | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | ||
| Assertion | qusrng | ⊢ ( 𝜑 → 𝑈 ∈ Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrng.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusrng.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusrng.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | qusrng.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | qusrng.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| 6 | qusrng.e1 | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 + 𝑏 ) ∼ ( 𝑝 + 𝑞 ) ) ) | |
| 7 | qusrng.e2 | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) | |
| 8 | qusrng.x | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
| 9 | eqid | ⊢ ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) = ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) | |
| 10 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 11 | 2 10 | eqeltrdi | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 12 | erex | ⊢ ( ∼ Er 𝑉 → ( 𝑉 ∈ V → ∼ ∈ V ) ) | |
| 13 | 5 11 12 | sylc | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 14 | 1 2 9 13 8 | qusval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) “s 𝑅 ) ) |
| 15 | 1 2 9 13 8 | quslem | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
| 16 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑅 ∈ Rng ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) | |
| 18 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 20 | 17 19 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) | |
| 22 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↔ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑦 ∈ 𝑉 ↔ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
| 24 | 21 23 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 26 | 25 3 | rngacl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 | 16 20 24 26 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 | 2 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ∈ 𝑉 ↔ ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) ∈ 𝑉 ↔ ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 30 | 27 29 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 31 | 5 11 9 30 6 | ercpbl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑎 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑝 ) ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑏 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑞 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 32 | 25 4 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 | 16 20 24 32 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 | 2 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑥 · 𝑦 ) ∈ 𝑉 ↔ ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑥 · 𝑦 ) ∈ 𝑉 ↔ ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 36 | 33 35 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 37 | 5 11 9 36 7 | ercpbl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑎 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑝 ) ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑏 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑞 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 38 | 14 2 3 4 15 31 37 8 | imasrng | ⊢ ( 𝜑 → 𝑈 ∈ Rng ) |