This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring ( qusring analog). (Contributed by AV, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qus2idrng.u | |- U = ( R /s ( R ~QG S ) ) |
|
| qus2idrng.i | |- I = ( 2Ideal ` R ) |
||
| Assertion | qus2idrng | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> U e. Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus2idrng.u | |- U = ( R /s ( R ~QG S ) ) |
|
| 2 | qus2idrng.i | |- I = ( 2Ideal ` R ) |
|
| 3 | 1 | a1i | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> U = ( R /s ( R ~QG S ) ) ) |
| 4 | eqidd | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( Base ` R ) = ( Base ` R ) ) |
|
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | simp3 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( SubGrp ` R ) ) |
|
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | eqid | |- ( R ~QG S ) = ( R ~QG S ) |
|
| 10 | 8 9 | eqger | |- ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er ( Base ` R ) ) |
| 11 | 7 10 | syl | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( R ~QG S ) Er ( Base ` R ) ) |
| 12 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 13 | 12 | 3ad2ant1 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Abel ) |
| 14 | ablnsg | |- ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
|
| 15 | 13 14 | syl | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
| 16 | 7 15 | eleqtrrd | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( NrmSGrp ` R ) ) |
| 17 | 8 9 5 | eqgcpbl | |- ( S e. ( NrmSGrp ` R ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) |
| 18 | 16 17 | syl | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) |
| 19 | 8 9 2 6 | 2idlcpblrng | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) ) |
| 20 | simp1 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Rng ) |
|
| 21 | 3 4 5 6 11 18 19 20 | qusrng | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> U e. Rng ) |