This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qtoptop2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | qtopres | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 4 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → 𝐽 ∈ Top ) | |
| 5 | funres | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ ∪ 𝐽 ) ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → Fun ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 7 | funforn | ⊢ ( Fun ( 𝐹 ↾ ∪ 𝐽 ) ↔ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 9 | dmres | ⊢ dom ( 𝐹 ↾ ∪ 𝐽 ) = ( ∪ 𝐽 ∩ dom 𝐹 ) | |
| 10 | inss1 | ⊢ ( ∪ 𝐽 ∩ dom 𝐹 ) ⊆ ∪ 𝐽 | |
| 11 | 9 10 | eqsstri | ⊢ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 |
| 12 | 11 | a1i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) |
| 13 | 1 | elqtop | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( 𝑦 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 14 | 4 8 12 13 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( 𝑦 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 15 | 14 | simprbda | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → 𝑦 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 16 | velpw | ⊢ ( 𝑦 ∈ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ↔ 𝑦 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → 𝑦 ∈ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → 𝑦 ∈ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 19 | 18 | ssrdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 20 | sstr2 | ⊢ ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ( ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) → 𝑥 ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) ) | |
| 21 | 19 20 | syl5com | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → 𝑥 ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 22 | sspwuni | ⊢ ( 𝑥 ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ↔ ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) | |
| 23 | 21 22 | imbitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 24 | imauni | ⊢ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) | |
| 25 | 14 | simplbda | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 27 | ssralv | ⊢ ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ( ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) ) | |
| 28 | 26 27 | mpan9 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ∀ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 29 | iunopn | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) → ∪ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) | |
| 30 | 4 28 29 | syl2an2r | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 31 | 24 30 | eqeltrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) |
| 32 | 31 | ex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) ) |
| 33 | 23 32 | jcad | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ( ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) ) ) |
| 34 | 1 | elqtop | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) ) ) |
| 35 | 4 8 12 34 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) ) ) |
| 36 | 33 35 | sylibrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) |
| 37 | 36 | alrimiv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ∀ 𝑥 ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) |
| 38 | inss1 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 | |
| 39 | 1 | elqtop | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 40 | 4 8 12 39 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 41 | 40 | biimpa | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ( 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) ) |
| 42 | 41 | adantrr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) ) |
| 43 | 42 | simpld | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 44 | 38 43 | sstrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 45 | 6 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → Fun ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 46 | inpreima | ⊢ ( Fun ( 𝐹 ↾ ∪ 𝐽 ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) = ( ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∩ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) = ( ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∩ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ) ) |
| 48 | 4 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → 𝐽 ∈ Top ) |
| 49 | 42 | simprd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) |
| 50 | 25 | adantrl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 51 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) → ( ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∩ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ) ∈ 𝐽 ) | |
| 52 | 48 49 50 51 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∩ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ) ∈ 𝐽 ) |
| 53 | 47 52 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) ∈ 𝐽 ) |
| 54 | 1 | elqtop | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ( 𝑥 ∩ 𝑦 ) ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) ∈ 𝐽 ) ) ) |
| 55 | 4 8 12 54 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ( 𝑥 ∩ 𝑦 ) ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) ∈ 𝐽 ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ( 𝑥 ∩ 𝑦 ) ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) ∈ 𝐽 ) ) ) |
| 57 | 44 53 56 | mpbir2and | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 58 | 57 | ralrimivva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ∀ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 59 | ovex | ⊢ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ V | |
| 60 | istopg | ⊢ ( ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ V → ( ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) ) | |
| 61 | 59 60 | ax-mp | ⊢ ( ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) |
| 62 | 37 58 61 | sylanbrc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ Top ) |
| 63 | 3 62 | eqeltrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |