This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient topology is unaffected by restriction to the base set. This property makes it slightly more convenient to use, since we don't have to require that F be a function with domain X . (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | qtopres | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | resima | ⊢ ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) = ( 𝐹 “ 𝑋 ) | |
| 3 | 2 | pweqi | ⊢ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) = 𝒫 ( 𝐹 “ 𝑋 ) |
| 4 | 3 | rabeqi | ⊢ { 𝑠 ∈ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } |
| 5 | residm | ⊢ ( ( 𝐹 ↾ 𝑋 ) ↾ 𝑋 ) = ( 𝐹 ↾ 𝑋 ) | |
| 6 | 5 | cnveqi | ⊢ ◡ ( ( 𝐹 ↾ 𝑋 ) ↾ 𝑋 ) = ◡ ( 𝐹 ↾ 𝑋 ) |
| 7 | 6 | imaeq1i | ⊢ ( ◡ ( ( 𝐹 ↾ 𝑋 ) ↾ 𝑋 ) “ 𝑠 ) = ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) |
| 8 | cnvresima | ⊢ ( ◡ ( ( 𝐹 ↾ 𝑋 ) ↾ 𝑋 ) “ 𝑠 ) = ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) | |
| 9 | cnvresima | ⊢ ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) = ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) | |
| 10 | 7 8 9 | 3eqtr3i | ⊢ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) = ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) |
| 11 | 10 | eleq1i | ⊢ ( ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ↔ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ) |
| 12 | 11 | rabbii | ⊢ { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } |
| 13 | 4 12 | eqtr2i | ⊢ { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } = { 𝑠 ∈ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } |
| 14 | 1 | qtopval | ⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ 𝑉 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 15 | resexg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝑋 ) ∈ V ) | |
| 16 | 1 | qtopval | ⊢ ( ( 𝐽 ∈ V ∧ ( 𝐹 ↾ 𝑋 ) ∈ V ) → ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) = { 𝑠 ∈ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 17 | 15 16 | sylan2 | ⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ 𝑉 ) → ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) = { 𝑠 ∈ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 18 | 13 14 17 | 3eqtr4a | ⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ 𝑉 ) → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) |
| 19 | 18 | expcom | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐽 ∈ V → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) ) |
| 20 | df-qtop | ⊢ qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } ) | |
| 21 | 20 | reldmmpo | ⊢ Rel dom qTop |
| 22 | 21 | ovprc1 | ⊢ ( ¬ 𝐽 ∈ V → ( 𝐽 qTop 𝐹 ) = ∅ ) |
| 23 | 21 | ovprc1 | ⊢ ( ¬ 𝐽 ∈ V → ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) = ∅ ) |
| 24 | 22 23 | eqtr4d | ⊢ ( ¬ 𝐽 ∈ V → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) |
| 25 | 19 24 | pm2.61d1 | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) |