This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | elqtop | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | qtopval2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 𝑌 ∣ ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 } ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 qTop 𝐹 ) ↔ 𝐴 ∈ { 𝑠 ∈ 𝒫 𝑌 ∣ ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 } ) ) |
| 4 | imaeq2 | ⊢ ( 𝑠 = 𝐴 → ( ◡ 𝐹 “ 𝑠 ) = ( ◡ 𝐹 “ 𝐴 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑠 = 𝐴 → ( ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ) |
| 6 | 5 | elrab | ⊢ ( 𝐴 ∈ { 𝑠 ∈ 𝒫 𝑌 ∣ ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 } ↔ ( 𝐴 ∈ 𝒫 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ) |
| 7 | uniexg | ⊢ ( 𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V ) | |
| 8 | 1 7 | eqeltrid | ⊢ ( 𝐽 ∈ 𝑉 → 𝑋 ∈ V ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝑋 ∈ V ) |
| 10 | simp3 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝑍 ⊆ 𝑋 ) | |
| 11 | 9 10 | ssexd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝑍 ∈ V ) |
| 12 | simp2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝐹 : 𝑍 –onto→ 𝑌 ) | |
| 13 | focdmex | ⊢ ( 𝑍 ∈ V → ( 𝐹 : 𝑍 –onto→ 𝑌 → 𝑌 ∈ V ) ) | |
| 14 | 11 12 13 | sylc | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
| 15 | elpw2g | ⊢ ( 𝑌 ∈ V → ( 𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌 ) ) |
| 17 | 16 | anbi1d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝒫 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ) ) |
| 18 | 6 17 | bitrid | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐴 ∈ { 𝑠 ∈ 𝒫 𝑌 ∣ ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 } ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ) ) |
| 19 | 3 18 | bitrd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ) ) |