This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | qtopkgen | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ ran 𝑘Gen ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | kgentop | ⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top ) | |
| 3 | 1 | qtoptop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 5 | elssuni | ⊢ ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| 7 | 4 | adantr | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 8 | eqid | ⊢ ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝐽 qTop 𝐹 ) | |
| 9 | 8 | kgenuni | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ Top → ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| 10 | 7 9 | syl | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| 11 | 6 10 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ) |
| 12 | simpll | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ ran 𝑘Gen ) | |
| 13 | 12 2 | syl | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ Top ) |
| 14 | simplr | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 Fn 𝑋 ) | |
| 15 | dffn4 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) | |
| 16 | 14 15 | sylib | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 17 | 1 | qtopuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ran 𝐹 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 18 | 13 16 17 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ran 𝐹 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 19 | 11 18 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ⊆ ran 𝐹 ) |
| 20 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 21 | 13 20 | sylib | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 22 | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 23 | 21 14 22 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 24 | kgencn3 | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ ( 𝐽 qTop 𝐹 ) ∈ Top ) → ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) = ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) | |
| 25 | 12 7 24 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) = ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 26 | 23 25 | eleqtrd | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 27 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) | |
| 28 | 26 27 | sylancom | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 29 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 30 | 12 16 29 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 31 | 19 28 30 | mpbir2and | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) |
| 32 | 31 | ex | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) ) |
| 33 | 32 | ssrdv | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ ( 𝐽 qTop 𝐹 ) ) |
| 34 | iskgen2 | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ran 𝑘Gen ↔ ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ ( 𝐽 qTop 𝐹 ) ) ) | |
| 35 | 4 33 34 | sylanbrc | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ ran 𝑘Gen ) |