This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopcmp.1 | |- X = U. J |
|
| Assertion | qtopkgen | |- ( ( J e. ran kGen /\ F Fn X ) -> ( J qTop F ) e. ran kGen ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopcmp.1 | |- X = U. J |
|
| 2 | kgentop | |- ( J e. ran kGen -> J e. Top ) |
|
| 3 | 1 | qtoptop | |- ( ( J e. Top /\ F Fn X ) -> ( J qTop F ) e. Top ) |
| 4 | 2 3 | sylan | |- ( ( J e. ran kGen /\ F Fn X ) -> ( J qTop F ) e. Top ) |
| 5 | elssuni | |- ( x e. ( kGen ` ( J qTop F ) ) -> x C_ U. ( kGen ` ( J qTop F ) ) ) |
|
| 6 | 5 | adantl | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ U. ( kGen ` ( J qTop F ) ) ) |
| 7 | 4 | adantr | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( J qTop F ) e. Top ) |
| 8 | eqid | |- U. ( J qTop F ) = U. ( J qTop F ) |
|
| 9 | 8 | kgenuni | |- ( ( J qTop F ) e. Top -> U. ( J qTop F ) = U. ( kGen ` ( J qTop F ) ) ) |
| 10 | 7 9 | syl | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> U. ( J qTop F ) = U. ( kGen ` ( J qTop F ) ) ) |
| 11 | 6 10 | sseqtrrd | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ U. ( J qTop F ) ) |
| 12 | simpll | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. ran kGen ) |
|
| 13 | 12 2 | syl | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. Top ) |
| 14 | simplr | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F Fn X ) |
|
| 15 | dffn4 | |- ( F Fn X <-> F : X -onto-> ran F ) |
|
| 16 | 14 15 | sylib | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F : X -onto-> ran F ) |
| 17 | 1 | qtopuni | |- ( ( J e. Top /\ F : X -onto-> ran F ) -> ran F = U. ( J qTop F ) ) |
| 18 | 13 16 17 | syl2anc | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ran F = U. ( J qTop F ) ) |
| 19 | 11 18 | sseqtrrd | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ ran F ) |
| 20 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 21 | 13 20 | sylib | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. ( TopOn ` X ) ) |
| 22 | qtopid | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
|
| 23 | 21 14 22 | syl2anc | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F e. ( J Cn ( J qTop F ) ) ) |
| 24 | kgencn3 | |- ( ( J e. ran kGen /\ ( J qTop F ) e. Top ) -> ( J Cn ( J qTop F ) ) = ( J Cn ( kGen ` ( J qTop F ) ) ) ) |
|
| 25 | 12 7 24 | syl2anc | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( J Cn ( J qTop F ) ) = ( J Cn ( kGen ` ( J qTop F ) ) ) ) |
| 26 | 23 25 | eleqtrd | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F e. ( J Cn ( kGen ` ( J qTop F ) ) ) ) |
| 27 | cnima | |- ( ( F e. ( J Cn ( kGen ` ( J qTop F ) ) ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( `' F " x ) e. J ) |
|
| 28 | 26 27 | sylancom | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( `' F " x ) e. J ) |
| 29 | 1 | elqtop2 | |- ( ( J e. ran kGen /\ F : X -onto-> ran F ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) ) |
| 30 | 12 16 29 | syl2anc | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) ) |
| 31 | 19 28 30 | mpbir2and | |- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x e. ( J qTop F ) ) |
| 32 | 31 | ex | |- ( ( J e. ran kGen /\ F Fn X ) -> ( x e. ( kGen ` ( J qTop F ) ) -> x e. ( J qTop F ) ) ) |
| 33 | 32 | ssrdv | |- ( ( J e. ran kGen /\ F Fn X ) -> ( kGen ` ( J qTop F ) ) C_ ( J qTop F ) ) |
| 34 | iskgen2 | |- ( ( J qTop F ) e. ran kGen <-> ( ( J qTop F ) e. Top /\ ( kGen ` ( J qTop F ) ) C_ ( J qTop F ) ) ) |
|
| 35 | 4 33 34 | sylanbrc | |- ( ( J e. ran kGen /\ F Fn X ) -> ( J qTop F ) e. ran kGen ) |