This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | qtopuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssidd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 ⊆ 𝑌 ) | |
| 3 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 5 | fimacnv | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) |
| 7 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑋 ∈ 𝐽 ) |
| 9 | 6 8 | eqeltrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ◡ 𝐹 “ 𝑌 ) ∈ 𝐽 ) |
| 10 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑌 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑌 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑌 ) ∈ 𝐽 ) ) ) |
| 11 | 2 9 10 | mpbir2and | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 ∈ ( 𝐽 qTop 𝐹 ) ) |
| 12 | elssuni | ⊢ ( 𝑌 ∈ ( 𝐽 qTop 𝐹 ) → 𝑌 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ) |
| 14 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 15 | simpl | ⊢ ( ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) → 𝑥 ⊆ 𝑌 ) | |
| 16 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌 ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) → 𝑥 ∈ 𝒫 𝑌 ) |
| 18 | 14 17 | biimtrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) → 𝑥 ∈ 𝒫 𝑌 ) ) |
| 19 | 18 | ssrdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝑌 ) |
| 20 | sspwuni | ⊢ ( ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝑌 ↔ ∪ ( 𝐽 qTop 𝐹 ) ⊆ 𝑌 ) | |
| 21 | 19 20 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ∪ ( 𝐽 qTop 𝐹 ) ⊆ 𝑌 ) |
| 22 | 13 21 | eqssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |