This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopf1.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| qtopf1.2 | |- ( ph -> F : X -1-1-> Y ) |
||
| Assertion | qtopf1 | |- ( ph -> F e. ( J Homeo ( J qTop F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopf1.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | qtopf1.2 | |- ( ph -> F : X -1-1-> Y ) |
|
| 3 | f1fn | |- ( F : X -1-1-> Y -> F Fn X ) |
|
| 4 | 2 3 | syl | |- ( ph -> F Fn X ) |
| 5 | qtopid | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
|
| 6 | 1 4 5 | syl2anc | |- ( ph -> F e. ( J Cn ( J qTop F ) ) ) |
| 7 | f1f1orn | |- ( F : X -1-1-> Y -> F : X -1-1-onto-> ran F ) |
|
| 8 | f1ocnv | |- ( F : X -1-1-onto-> ran F -> `' F : ran F -1-1-onto-> X ) |
|
| 9 | f1of | |- ( `' F : ran F -1-1-onto-> X -> `' F : ran F --> X ) |
|
| 10 | 2 7 8 9 | 4syl | |- ( ph -> `' F : ran F --> X ) |
| 11 | imacnvcnv | |- ( `' `' F " x ) = ( F " x ) |
|
| 12 | imassrn | |- ( F " x ) C_ ran F |
|
| 13 | 12 | a1i | |- ( ( ph /\ x e. J ) -> ( F " x ) C_ ran F ) |
| 14 | 2 | adantr | |- ( ( ph /\ x e. J ) -> F : X -1-1-> Y ) |
| 15 | toponss | |- ( ( J e. ( TopOn ` X ) /\ x e. J ) -> x C_ X ) |
|
| 16 | 1 15 | sylan | |- ( ( ph /\ x e. J ) -> x C_ X ) |
| 17 | f1imacnv | |- ( ( F : X -1-1-> Y /\ x C_ X ) -> ( `' F " ( F " x ) ) = x ) |
|
| 18 | 14 16 17 | syl2anc | |- ( ( ph /\ x e. J ) -> ( `' F " ( F " x ) ) = x ) |
| 19 | simpr | |- ( ( ph /\ x e. J ) -> x e. J ) |
|
| 20 | 18 19 | eqeltrd | |- ( ( ph /\ x e. J ) -> ( `' F " ( F " x ) ) e. J ) |
| 21 | dffn4 | |- ( F Fn X <-> F : X -onto-> ran F ) |
|
| 22 | 4 21 | sylib | |- ( ph -> F : X -onto-> ran F ) |
| 23 | elqtop3 | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( ( F " x ) e. ( J qTop F ) <-> ( ( F " x ) C_ ran F /\ ( `' F " ( F " x ) ) e. J ) ) ) |
|
| 24 | 1 22 23 | syl2anc | |- ( ph -> ( ( F " x ) e. ( J qTop F ) <-> ( ( F " x ) C_ ran F /\ ( `' F " ( F " x ) ) e. J ) ) ) |
| 25 | 24 | adantr | |- ( ( ph /\ x e. J ) -> ( ( F " x ) e. ( J qTop F ) <-> ( ( F " x ) C_ ran F /\ ( `' F " ( F " x ) ) e. J ) ) ) |
| 26 | 13 20 25 | mpbir2and | |- ( ( ph /\ x e. J ) -> ( F " x ) e. ( J qTop F ) ) |
| 27 | 11 26 | eqeltrid | |- ( ( ph /\ x e. J ) -> ( `' `' F " x ) e. ( J qTop F ) ) |
| 28 | 27 | ralrimiva | |- ( ph -> A. x e. J ( `' `' F " x ) e. ( J qTop F ) ) |
| 29 | qtoptopon | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
|
| 30 | 1 22 29 | syl2anc | |- ( ph -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
| 31 | iscn | |- ( ( ( J qTop F ) e. ( TopOn ` ran F ) /\ J e. ( TopOn ` X ) ) -> ( `' F e. ( ( J qTop F ) Cn J ) <-> ( `' F : ran F --> X /\ A. x e. J ( `' `' F " x ) e. ( J qTop F ) ) ) ) |
|
| 32 | 30 1 31 | syl2anc | |- ( ph -> ( `' F e. ( ( J qTop F ) Cn J ) <-> ( `' F : ran F --> X /\ A. x e. J ( `' `' F " x ) e. ( J qTop F ) ) ) ) |
| 33 | 10 28 32 | mpbir2and | |- ( ph -> `' F e. ( ( J qTop F ) Cn J ) ) |
| 34 | ishmeo | |- ( F e. ( J Homeo ( J qTop F ) ) <-> ( F e. ( J Cn ( J qTop F ) ) /\ `' F e. ( ( J qTop F ) Cn J ) ) ) |
|
| 35 | 6 33 34 | sylanbrc | |- ( ph -> F e. ( J Homeo ( J qTop F ) ) ) |