This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qreccl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 2 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 3 | 2 | ancli | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℕ ∧ 𝑦 ≠ 0 ) ) |
| 4 | neeq1 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ≠ 0 ↔ ( 𝑥 / 𝑦 ) ≠ 0 ) ) | |
| 5 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 6 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 7 | 5 6 | anim12i | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 8 | divne0b | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 ≠ 0 ↔ ( 𝑥 / 𝑦 ) ≠ 0 ) ) | |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑦 ≠ 0 ) → ( 𝑥 ≠ 0 ↔ ( 𝑥 / 𝑦 ) ≠ 0 ) ) |
| 10 | 7 9 | sylan | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) → ( 𝑥 ≠ 0 ↔ ( 𝑥 / 𝑦 ) ≠ 0 ) ) |
| 11 | 10 | bicomd | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) → ( ( 𝑥 / 𝑦 ) ≠ 0 ↔ 𝑥 ≠ 0 ) ) |
| 12 | 4 11 | sylan9bbr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) → ( 𝐴 ≠ 0 ↔ 𝑥 ≠ 0 ) ) |
| 13 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 14 | zmulcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) | |
| 15 | 13 14 | sylan2 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 17 | msqznn | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) → ( 𝑥 · 𝑥 ) ∈ ℕ ) | |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( 𝑥 · 𝑥 ) ∈ ℕ ) |
| 19 | 16 18 | jca | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ) |
| 20 | 19 | adantlr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝑥 ≠ 0 ) → ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ) |
| 21 | 20 | adantlr | ⊢ ( ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) ∧ 𝑥 ≠ 0 ) → ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ) |
| 22 | oveq2 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 1 / 𝐴 ) = ( 1 / ( 𝑥 / 𝑦 ) ) ) | |
| 23 | divid | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 𝑥 / 𝑥 ) = 1 ) | |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 / 𝑥 ) = 1 ) |
| 25 | 24 | oveq1d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( ( 𝑥 / 𝑥 ) / ( 𝑥 / 𝑦 ) ) = ( 1 / ( 𝑥 / 𝑦 ) ) ) |
| 26 | simpll | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → 𝑥 ∈ ℂ ) | |
| 27 | simpl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) | |
| 28 | simpr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) | |
| 29 | divdivdiv | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) ) → ( ( 𝑥 / 𝑥 ) / ( 𝑥 / 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) | |
| 30 | 26 27 27 28 29 | syl22anc | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( ( 𝑥 / 𝑥 ) / ( 𝑥 / 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) |
| 31 | 25 30 | eqtr3d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 1 / ( 𝑥 / 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) |
| 32 | 31 | an4s | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) ) → ( 1 / ( 𝑥 / 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) |
| 33 | 7 32 | sylan | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) ) → ( 1 / ( 𝑥 / 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) |
| 34 | 33 | anass1rs | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝑥 ≠ 0 ) → ( 1 / ( 𝑥 / 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) |
| 35 | 22 34 | sylan9eqr | ⊢ ( ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝑥 ≠ 0 ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) → ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) |
| 36 | 35 | an32s | ⊢ ( ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) ∧ 𝑥 ≠ 0 ) → ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) |
| 37 | 21 36 | jca | ⊢ ( ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) ∧ 𝑥 ≠ 0 ) → ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) ) |
| 38 | 37 | ex | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) → ( 𝑥 ≠ 0 → ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) ) ) |
| 39 | 12 38 | sylbid | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) → ( 𝐴 ≠ 0 → ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) ) ) |
| 40 | 39 | ex | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑦 ≠ 0 ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ≠ 0 → ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) ) ) ) |
| 41 | 40 | anasss | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ≠ 0 ) ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ≠ 0 → ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) ) ) ) |
| 42 | 3 41 | sylan2 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ≠ 0 → ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) ) ) ) |
| 43 | rspceov | ⊢ ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) → ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ ( 1 / 𝐴 ) = ( 𝑧 / 𝑤 ) ) | |
| 44 | 43 | 3expa | ⊢ ( ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) → ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ ( 1 / 𝐴 ) = ( 𝑧 / 𝑤 ) ) |
| 45 | elq | ⊢ ( ( 1 / 𝐴 ) ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ ( 1 / 𝐴 ) = ( 𝑧 / 𝑤 ) ) | |
| 46 | 44 45 | sylibr | ⊢ ( ( ( ( 𝑥 · 𝑦 ) ∈ ℤ ∧ ( 𝑥 · 𝑥 ) ∈ ℕ ) ∧ ( 1 / 𝐴 ) = ( ( 𝑥 · 𝑦 ) / ( 𝑥 · 𝑥 ) ) ) → ( 1 / 𝐴 ) ∈ ℚ ) |
| 47 | 42 46 | syl8 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℚ ) ) ) |
| 48 | 47 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℚ ) ) |
| 49 | 1 48 | sylbi | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℚ ) ) |
| 50 | 49 | imp | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℚ ) |