This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ratio of nonzero numbers is nonzero. (Contributed by NM, 2-Aug-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divne0b | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 / 𝐵 ) ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diveq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 2 | 1 | bicomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 = 0 ↔ ( 𝐴 / 𝐵 ) = 0 ) ) |
| 3 | 2 | necon3bid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 / 𝐵 ) ≠ 0 ) ) |