This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of division of rationals. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qdivcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcn | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) | |
| 2 | qcn | ⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) | |
| 3 | id | ⊢ ( 𝐵 ≠ 0 → 𝐵 ≠ 0 ) | |
| 4 | divrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) | |
| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 6 | qreccl | ⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℚ ) | |
| 7 | qmulcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( 1 / 𝐵 ) ∈ ℚ ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ℚ ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ℚ ) |
| 9 | 8 | 3impb | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ℚ ) |
| 10 | 5 9 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |