This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qreccl | |- ( ( A e. QQ /\ A =/= 0 ) -> ( 1 / A ) e. QQ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | |- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
|
| 2 | nnne0 | |- ( y e. NN -> y =/= 0 ) |
|
| 3 | 2 | ancli | |- ( y e. NN -> ( y e. NN /\ y =/= 0 ) ) |
| 4 | neeq1 | |- ( A = ( x / y ) -> ( A =/= 0 <-> ( x / y ) =/= 0 ) ) |
|
| 5 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 6 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 7 | 5 6 | anim12i | |- ( ( x e. ZZ /\ y e. NN ) -> ( x e. CC /\ y e. CC ) ) |
| 8 | divne0b | |- ( ( x e. CC /\ y e. CC /\ y =/= 0 ) -> ( x =/= 0 <-> ( x / y ) =/= 0 ) ) |
|
| 9 | 8 | 3expa | |- ( ( ( x e. CC /\ y e. CC ) /\ y =/= 0 ) -> ( x =/= 0 <-> ( x / y ) =/= 0 ) ) |
| 10 | 7 9 | sylan | |- ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) -> ( x =/= 0 <-> ( x / y ) =/= 0 ) ) |
| 11 | 10 | bicomd | |- ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) -> ( ( x / y ) =/= 0 <-> x =/= 0 ) ) |
| 12 | 4 11 | sylan9bbr | |- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) -> ( A =/= 0 <-> x =/= 0 ) ) |
| 13 | nnz | |- ( y e. NN -> y e. ZZ ) |
|
| 14 | zmulcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
|
| 15 | 13 14 | sylan2 | |- ( ( x e. ZZ /\ y e. NN ) -> ( x x. y ) e. ZZ ) |
| 16 | 15 | adantr | |- ( ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) -> ( x x. y ) e. ZZ ) |
| 17 | msqznn | |- ( ( x e. ZZ /\ x =/= 0 ) -> ( x x. x ) e. NN ) |
|
| 18 | 17 | adantlr | |- ( ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) -> ( x x. x ) e. NN ) |
| 19 | 16 18 | jca | |- ( ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) -> ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) ) |
| 20 | 19 | adantlr | |- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ x =/= 0 ) -> ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) ) |
| 21 | 20 | adantlr | |- ( ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) /\ x =/= 0 ) -> ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) ) |
| 22 | oveq2 | |- ( A = ( x / y ) -> ( 1 / A ) = ( 1 / ( x / y ) ) ) |
|
| 23 | divid | |- ( ( x e. CC /\ x =/= 0 ) -> ( x / x ) = 1 ) |
|
| 24 | 23 | adantr | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x / x ) = 1 ) |
| 25 | 24 | oveq1d | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( ( x / x ) / ( x / y ) ) = ( 1 / ( x / y ) ) ) |
| 26 | simpll | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> x e. CC ) |
|
| 27 | simpl | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x e. CC /\ x =/= 0 ) ) |
|
| 28 | simpr | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( y e. CC /\ y =/= 0 ) ) |
|
| 29 | divdivdiv | |- ( ( ( x e. CC /\ ( x e. CC /\ x =/= 0 ) ) /\ ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) ) -> ( ( x / x ) / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
|
| 30 | 26 27 27 28 29 | syl22anc | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( ( x / x ) / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
| 31 | 25 30 | eqtr3d | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( 1 / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
| 32 | 31 | an4s | |- ( ( ( x e. CC /\ y e. CC ) /\ ( x =/= 0 /\ y =/= 0 ) ) -> ( 1 / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
| 33 | 7 32 | sylan | |- ( ( ( x e. ZZ /\ y e. NN ) /\ ( x =/= 0 /\ y =/= 0 ) ) -> ( 1 / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
| 34 | 33 | anass1rs | |- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ x =/= 0 ) -> ( 1 / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
| 35 | 22 34 | sylan9eqr | |- ( ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ x =/= 0 ) /\ A = ( x / y ) ) -> ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) |
| 36 | 35 | an32s | |- ( ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) /\ x =/= 0 ) -> ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) |
| 37 | 21 36 | jca | |- ( ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) /\ x =/= 0 ) -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) |
| 38 | 37 | ex | |- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) -> ( x =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) |
| 39 | 12 38 | sylbid | |- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) -> ( A =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) |
| 40 | 39 | ex | |- ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) -> ( A = ( x / y ) -> ( A =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) ) |
| 41 | 40 | anasss | |- ( ( x e. ZZ /\ ( y e. NN /\ y =/= 0 ) ) -> ( A = ( x / y ) -> ( A =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) ) |
| 42 | 3 41 | sylan2 | |- ( ( x e. ZZ /\ y e. NN ) -> ( A = ( x / y ) -> ( A =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) ) |
| 43 | rspceov | |- ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) -> E. z e. ZZ E. w e. NN ( 1 / A ) = ( z / w ) ) |
|
| 44 | 43 | 3expa | |- ( ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) -> E. z e. ZZ E. w e. NN ( 1 / A ) = ( z / w ) ) |
| 45 | elq | |- ( ( 1 / A ) e. QQ <-> E. z e. ZZ E. w e. NN ( 1 / A ) = ( z / w ) ) |
|
| 46 | 44 45 | sylibr | |- ( ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) -> ( 1 / A ) e. QQ ) |
| 47 | 42 46 | syl8 | |- ( ( x e. ZZ /\ y e. NN ) -> ( A = ( x / y ) -> ( A =/= 0 -> ( 1 / A ) e. QQ ) ) ) |
| 48 | 47 | rexlimivv | |- ( E. x e. ZZ E. y e. NN A = ( x / y ) -> ( A =/= 0 -> ( 1 / A ) e. QQ ) ) |
| 49 | 1 48 | sylbi | |- ( A e. QQ -> ( A =/= 0 -> ( 1 / A ) e. QQ ) ) |
| 50 | 49 | imp | |- ( ( A e. QQ /\ A =/= 0 ) -> ( 1 / A ) e. QQ ) |