This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space U . The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in Kreyszig p. 135. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pyth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| pyth.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| pyth.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| pyth.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| pythi.u | ⊢ 𝑈 ∈ CPreHilOLD | ||
| pythi.a | ⊢ 𝐴 ∈ 𝑋 | ||
| pythi.b | ⊢ 𝐵 ∈ 𝑋 | ||
| Assertion | pythi | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pyth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | pyth.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | pyth.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | pyth.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | pythi.u | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | pythi.a | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | pythi.b | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | 1 2 4 5 6 7 6 7 | ip2dii | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐴 𝐺 𝐵 ) ) = ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) ) |
| 9 | id | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( 𝐴 𝑃 𝐵 ) = 0 ) | |
| 10 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 11 | 1 4 | diporthcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐵 ) = 0 ↔ ( 𝐵 𝑃 𝐴 ) = 0 ) ) |
| 12 | 10 6 7 11 | mp3an | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 ↔ ( 𝐵 𝑃 𝐴 ) = 0 ) |
| 13 | 12 | biimpi | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( 𝐵 𝑃 𝐴 ) = 0 ) |
| 14 | 9 13 | oveq12d | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) = ( 0 + 0 ) ) |
| 15 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 16 | 14 15 | eqtrdi | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) = 0 ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) ) = ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + 0 ) ) |
| 18 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) ∈ ℂ ) |
| 19 | 10 6 6 18 | mp3an | ⊢ ( 𝐴 𝑃 𝐴 ) ∈ ℂ |
| 20 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐵 ) ∈ ℂ ) |
| 21 | 10 7 7 20 | mp3an | ⊢ ( 𝐵 𝑃 𝐵 ) ∈ ℂ |
| 22 | 19 21 | addcli | ⊢ ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) ∈ ℂ |
| 23 | 22 | addridi | ⊢ ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + 0 ) = ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) |
| 24 | 17 23 | eqtrdi | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) ) |
| 25 | 8 24 | eqtrid | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) ) |
| 26 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 27 | 10 6 7 26 | mp3an | ⊢ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 |
| 28 | 1 3 4 | ipidsq | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) |
| 29 | 10 27 28 | mp2an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) |
| 30 | 1 3 4 | ipidsq | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 31 | 10 6 30 | mp2an | ⊢ ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) |
| 32 | 1 3 4 | ipidsq | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 33 | 10 7 32 | mp2an | ⊢ ( 𝐵 𝑃 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) |
| 34 | 31 33 | oveq12i | ⊢ ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 35 | 25 29 34 | 3eqtr3g | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |