This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space U . The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in Kreyszig p. 135. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pyth.1 | |- X = ( BaseSet ` U ) |
|
| pyth.2 | |- G = ( +v ` U ) |
||
| pyth.6 | |- N = ( normCV ` U ) |
||
| pyth.7 | |- P = ( .iOLD ` U ) |
||
| pythi.u | |- U e. CPreHilOLD |
||
| pythi.a | |- A e. X |
||
| pythi.b | |- B e. X |
||
| Assertion | pythi | |- ( ( A P B ) = 0 -> ( ( N ` ( A G B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pyth.1 | |- X = ( BaseSet ` U ) |
|
| 2 | pyth.2 | |- G = ( +v ` U ) |
|
| 3 | pyth.6 | |- N = ( normCV ` U ) |
|
| 4 | pyth.7 | |- P = ( .iOLD ` U ) |
|
| 5 | pythi.u | |- U e. CPreHilOLD |
|
| 6 | pythi.a | |- A e. X |
|
| 7 | pythi.b | |- B e. X |
|
| 8 | 1 2 4 5 6 7 6 7 | ip2dii | |- ( ( A G B ) P ( A G B ) ) = ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) |
| 9 | id | |- ( ( A P B ) = 0 -> ( A P B ) = 0 ) |
|
| 10 | 5 | phnvi | |- U e. NrmCVec |
| 11 | 1 4 | diporthcom | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) = 0 <-> ( B P A ) = 0 ) ) |
| 12 | 10 6 7 11 | mp3an | |- ( ( A P B ) = 0 <-> ( B P A ) = 0 ) |
| 13 | 12 | biimpi | |- ( ( A P B ) = 0 -> ( B P A ) = 0 ) |
| 14 | 9 13 | oveq12d | |- ( ( A P B ) = 0 -> ( ( A P B ) + ( B P A ) ) = ( 0 + 0 ) ) |
| 15 | 00id | |- ( 0 + 0 ) = 0 |
|
| 16 | 14 15 | eqtrdi | |- ( ( A P B ) = 0 -> ( ( A P B ) + ( B P A ) ) = 0 ) |
| 17 | 16 | oveq2d | |- ( ( A P B ) = 0 -> ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) = ( ( ( A P A ) + ( B P B ) ) + 0 ) ) |
| 18 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( A P A ) e. CC ) |
| 19 | 10 6 6 18 | mp3an | |- ( A P A ) e. CC |
| 20 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ B e. X ) -> ( B P B ) e. CC ) |
| 21 | 10 7 7 20 | mp3an | |- ( B P B ) e. CC |
| 22 | 19 21 | addcli | |- ( ( A P A ) + ( B P B ) ) e. CC |
| 23 | 22 | addridi | |- ( ( ( A P A ) + ( B P B ) ) + 0 ) = ( ( A P A ) + ( B P B ) ) |
| 24 | 17 23 | eqtrdi | |- ( ( A P B ) = 0 -> ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) = ( ( A P A ) + ( B P B ) ) ) |
| 25 | 8 24 | eqtrid | |- ( ( A P B ) = 0 -> ( ( A G B ) P ( A G B ) ) = ( ( A P A ) + ( B P B ) ) ) |
| 26 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 27 | 10 6 7 26 | mp3an | |- ( A G B ) e. X |
| 28 | 1 3 4 | ipidsq | |- ( ( U e. NrmCVec /\ ( A G B ) e. X ) -> ( ( A G B ) P ( A G B ) ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 29 | 10 27 28 | mp2an | |- ( ( A G B ) P ( A G B ) ) = ( ( N ` ( A G B ) ) ^ 2 ) |
| 30 | 1 3 4 | ipidsq | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) |
| 31 | 10 6 30 | mp2an | |- ( A P A ) = ( ( N ` A ) ^ 2 ) |
| 32 | 1 3 4 | ipidsq | |- ( ( U e. NrmCVec /\ B e. X ) -> ( B P B ) = ( ( N ` B ) ^ 2 ) ) |
| 33 | 10 7 32 | mp2an | |- ( B P B ) = ( ( N ` B ) ^ 2 ) |
| 34 | 31 33 | oveq12i | |- ( ( A P A ) + ( B P B ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) |
| 35 | 25 29 34 | 3eqtr3g | |- ( ( A P B ) = 0 -> ( ( N ` ( A G B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |