This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipcl.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | diporthcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐵 ) = 0 ↔ ( 𝐵 𝑃 𝐴 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipcl.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | fveq2 | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ∗ ‘ ( 𝐴 𝑃 𝐵 ) ) = ( ∗ ‘ 0 ) ) | |
| 4 | cj0 | ⊢ ( ∗ ‘ 0 ) = 0 | |
| 5 | 3 4 | eqtrdi | ⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ∗ ‘ ( 𝐴 𝑃 𝐵 ) ) = 0 ) |
| 6 | 1 2 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐴 𝑃 𝐵 ) ) = ( 𝐵 𝑃 𝐴 ) ) |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ∗ ‘ ( 𝐴 𝑃 𝐵 ) ) = 0 ↔ ( 𝐵 𝑃 𝐴 ) = 0 ) ) |
| 8 | 5 7 | imbitrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐵 ) = 0 → ( 𝐵 𝑃 𝐴 ) = 0 ) ) |
| 9 | fveq2 | ⊢ ( ( 𝐵 𝑃 𝐴 ) = 0 → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( ∗ ‘ 0 ) ) | |
| 10 | 9 4 | eqtrdi | ⊢ ( ( 𝐵 𝑃 𝐴 ) = 0 → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = 0 ) |
| 11 | 1 2 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 12 | 11 | 3com23 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 13 | 12 | eqeq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = 0 ↔ ( 𝐴 𝑃 𝐵 ) = 0 ) ) |
| 14 | 10 13 | imbitrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝑃 𝐴 ) = 0 → ( 𝐴 𝑃 𝐵 ) = 0 ) ) |
| 15 | 8 14 | impbid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐵 ) = 0 ↔ ( 𝐵 𝑃 𝐴 ) = 0 ) ) |