This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space U . The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in Kreyszig p. 135. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pyth.1 | ||
| pyth.2 | |||
| pyth.6 | |||
| pyth.7 | |||
| pythi.u | |||
| pythi.a | |||
| pythi.b | |||
| Assertion | pythi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pyth.1 | ||
| 2 | pyth.2 | ||
| 3 | pyth.6 | ||
| 4 | pyth.7 | ||
| 5 | pythi.u | ||
| 6 | pythi.a | ||
| 7 | pythi.b | ||
| 8 | 1 2 4 5 6 7 6 7 | ip2dii | |
| 9 | id | ||
| 10 | 5 | phnvi | |
| 11 | 1 4 | diporthcom | |
| 12 | 10 6 7 11 | mp3an | |
| 13 | 12 | biimpi | |
| 14 | 9 13 | oveq12d | |
| 15 | 00id | ||
| 16 | 14 15 | eqtrdi | |
| 17 | 16 | oveq2d | |
| 18 | 1 4 | dipcl | |
| 19 | 10 6 6 18 | mp3an | |
| 20 | 1 4 | dipcl | |
| 21 | 10 7 7 20 | mp3an | |
| 22 | 19 21 | addcli | |
| 23 | 22 | addridi | |
| 24 | 17 23 | eqtrdi | |
| 25 | 8 24 | eqtrid | |
| 26 | 1 2 | nvgcl | |
| 27 | 10 6 7 26 | mp3an | |
| 28 | 1 3 4 | ipidsq | |
| 29 | 10 27 28 | mp2an | |
| 30 | 1 3 4 | ipidsq | |
| 31 | 10 6 30 | mp2an | |
| 32 | 1 3 4 | ipidsq | |
| 33 | 10 7 32 | mp2an | |
| 34 | 31 33 | oveq12i | |
| 35 | 25 29 34 | 3eqtr3g |