This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip2dii.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip2dii.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip2dii.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip2dii.u | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ip2dii.a | ⊢ 𝐴 ∈ 𝑋 | ||
| ip2dii.b | ⊢ 𝐵 ∈ 𝑋 | ||
| ip2dii.c | ⊢ 𝐶 ∈ 𝑋 | ||
| ip2dii.d | ⊢ 𝐷 ∈ 𝑋 | ||
| Assertion | ip2dii | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐶 𝐺 𝐷 ) ) = ( ( ( 𝐴 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐷 ) ) + ( ( 𝐴 𝑃 𝐷 ) + ( 𝐵 𝑃 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2dii.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip2dii.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip2dii.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | ip2dii.u | ⊢ 𝑈 ∈ CPreHilOLD | |
| 5 | ip2dii.a | ⊢ 𝐴 ∈ 𝑋 | |
| 6 | ip2dii.b | ⊢ 𝐵 ∈ 𝑋 | |
| 7 | ip2dii.c | ⊢ 𝐶 ∈ 𝑋 | |
| 8 | ip2dii.d | ⊢ 𝐷 ∈ 𝑋 | |
| 9 | 5 7 8 | 3pm3.2i | ⊢ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) |
| 10 | 1 2 3 | dipdi | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝑃 𝐶 ) + ( 𝐴 𝑃 𝐷 ) ) ) |
| 11 | 4 9 10 | mp2an | ⊢ ( 𝐴 𝑃 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝑃 𝐶 ) + ( 𝐴 𝑃 𝐷 ) ) |
| 12 | 6 7 8 | 3pm3.2i | ⊢ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) |
| 13 | 1 2 3 | dipdi | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐵 𝑃 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐵 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐷 ) ) ) |
| 14 | 4 12 13 | mp2an | ⊢ ( 𝐵 𝑃 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐵 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐷 ) ) |
| 15 | 11 14 | oveq12i | ⊢ ( ( 𝐴 𝑃 ( 𝐶 𝐺 𝐷 ) ) + ( 𝐵 𝑃 ( 𝐶 𝐺 𝐷 ) ) ) = ( ( ( 𝐴 𝑃 𝐶 ) + ( 𝐴 𝑃 𝐷 ) ) + ( ( 𝐵 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐷 ) ) ) |
| 16 | 4 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 17 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐶 𝐺 𝐷 ) ∈ 𝑋 ) |
| 18 | 16 7 8 17 | mp3an | ⊢ ( 𝐶 𝐺 𝐷 ) ∈ 𝑋 |
| 19 | 5 6 18 | 3pm3.2i | ⊢ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐶 𝐺 𝐷 ) ∈ 𝑋 ) |
| 20 | 1 2 3 | dipdir | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐶 𝐺 𝐷 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝑃 ( 𝐶 𝐺 𝐷 ) ) + ( 𝐵 𝑃 ( 𝐶 𝐺 𝐷 ) ) ) ) |
| 21 | 4 19 20 | mp2an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝑃 ( 𝐶 𝐺 𝐷 ) ) + ( 𝐵 𝑃 ( 𝐶 𝐺 𝐷 ) ) ) |
| 22 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐶 ) ∈ ℂ ) |
| 23 | 16 5 7 22 | mp3an | ⊢ ( 𝐴 𝑃 𝐶 ) ∈ ℂ |
| 24 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐷 ) ∈ ℂ ) |
| 25 | 16 6 8 24 | mp3an | ⊢ ( 𝐵 𝑃 𝐷 ) ∈ ℂ |
| 26 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐷 ) ∈ ℂ ) |
| 27 | 16 5 8 26 | mp3an | ⊢ ( 𝐴 𝑃 𝐷 ) ∈ ℂ |
| 28 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 29 | 16 6 7 28 | mp3an | ⊢ ( 𝐵 𝑃 𝐶 ) ∈ ℂ |
| 30 | 23 25 27 29 | add42i | ⊢ ( ( ( 𝐴 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐷 ) ) + ( ( 𝐴 𝑃 𝐷 ) + ( 𝐵 𝑃 𝐶 ) ) ) = ( ( ( 𝐴 𝑃 𝐶 ) + ( 𝐴 𝑃 𝐷 ) ) + ( ( 𝐵 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐷 ) ) ) |
| 31 | 15 21 30 | 3eqtr4i | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐶 𝐺 𝐷 ) ) = ( ( ( 𝐴 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐷 ) ) + ( ( 𝐴 𝑃 𝐷 ) + ( 𝐵 𝑃 𝐶 ) ) ) |