This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdadd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | gcdaddm | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + ( 1 · 𝑀 ) ) ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + ( 1 · 𝑀 ) ) ) ) |
| 4 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 5 | mullid | ⊢ ( 𝑀 ∈ ℂ → ( 1 · 𝑀 ) = 𝑀 ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝑀 ∈ ℂ → ( 𝑁 + ( 1 · 𝑀 ) ) = ( 𝑁 + 𝑀 ) ) |
| 7 | 6 | oveq2d | ⊢ ( 𝑀 ∈ ℂ → ( 𝑀 gcd ( 𝑁 + ( 1 · 𝑀 ) ) ) = ( 𝑀 gcd ( 𝑁 + 𝑀 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd ( 𝑁 + ( 1 · 𝑀 ) ) ) = ( 𝑀 gcd ( 𝑁 + 𝑀 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑁 + ( 1 · 𝑀 ) ) ) = ( 𝑀 gcd ( 𝑁 + 𝑀 ) ) ) |
| 10 | 3 9 | eqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + 𝑀 ) ) ) |