This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∈ V | |
| 2 | ovex | ⊢ ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∈ V | |
| 3 | preq12bg | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∈ V ∧ ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∈ V ) ) → ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ↔ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) ) ) | |
| 4 | 1 2 3 | mpanr12 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ↔ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) ) ) |
| 5 | 4 | anbi1d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 6 | andir | ⊢ ( ( ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) | |
| 7 | df-3an | ⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) | |
| 8 | df-3an | ⊢ ( ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) | |
| 9 | 7 8 | orbi12i | ⊢ ( ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ↔ ( ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 10 | 6 9 | bitr4i | ⊢ ( ( ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 11 | 5 10 | bitrdi | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℕ ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑘 ∈ ℕ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) ) |
| 13 | 12 | 2rexbidv | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) ) |
| 14 | r19.43 | ⊢ ( ∃ 𝑘 ∈ ℕ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ↔ ( ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) | |
| 15 | 14 | 2rexbii | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 16 | r19.43 | ⊢ ( ∃ 𝑚 ∈ ℕ ( ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) | |
| 17 | 16 | rexbii | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 18 | r19.43 | ⊢ ( ∃ 𝑛 ∈ ℕ ( ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ↔ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) | |
| 19 | 15 17 18 | 3bitri | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ↔ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 20 | 13 19 | bitrdi | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) ) |
| 21 | pythagtriplem1 | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) | |
| 22 | 21 | a1i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 23 | 3ancoma | ⊢ ( ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) | |
| 24 | 23 | rexbii | ⊢ ( ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑘 ∈ ℕ ( 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 25 | 24 | 2rexbii | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 26 | pythagtriplem1 | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) | |
| 27 | 25 26 | sylbi | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| 28 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 29 | 28 | sqcld | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 30 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 31 | 30 | sqcld | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 32 | addcom | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ ( 𝐵 ↑ 2 ) ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) ) | |
| 33 | 29 31 32 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) ) |
| 34 | 33 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ↔ ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 35 | 27 34 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 36 | 22 35 | jaod | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ∨ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐵 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 37 | 20 36 | sylbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( { 𝐴 , 𝐵 } = { ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) , ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) } ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |