This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem1 | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 2 | nncn | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) | |
| 3 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 4 | sqcl | ⊢ ( 𝑚 ∈ ℂ → ( 𝑚 ↑ 2 ) ∈ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑚 ↑ 2 ) ∈ ℂ ) |
| 6 | 5 | sqcld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) ↑ 2 ) ∈ ℂ ) |
| 7 | 2cn | ⊢ 2 ∈ ℂ | |
| 8 | sqcl | ⊢ ( 𝑛 ∈ ℂ → ( 𝑛 ↑ 2 ) ∈ ℂ ) | |
| 9 | mulcl | ⊢ ( ( ( 𝑚 ↑ 2 ) ∈ ℂ ∧ ( 𝑛 ↑ 2 ) ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ∈ ℂ ) | |
| 10 | 4 8 9 | syl2anr | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ∈ ℂ ) |
| 11 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ∈ ℂ ) → ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ∈ ℂ ) | |
| 12 | 7 10 11 | sylancr | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ∈ ℂ ) |
| 13 | 6 12 | subcld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 14 | 8 | adantr | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 15 | 14 | sqcld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑛 ↑ 2 ) ↑ 2 ) ∈ ℂ ) |
| 16 | mulcl | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑚 · 𝑛 ) ∈ ℂ ) | |
| 17 | 16 | ancoms | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑚 · 𝑛 ) ∈ ℂ ) |
| 18 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝑚 · 𝑛 ) ∈ ℂ ) → ( 2 · ( 𝑚 · 𝑛 ) ) ∈ ℂ ) | |
| 19 | 7 17 18 | sylancr | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 2 · ( 𝑚 · 𝑛 ) ) ∈ ℂ ) |
| 20 | 19 | sqcld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 21 | 13 15 20 | add32d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 22 | 6 12 20 | subadd23d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 23 | sqmul | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝑚 · 𝑛 ) ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝑚 · 𝑛 ) ↑ 2 ) ) ) | |
| 24 | 7 17 23 | sylancr | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝑚 · 𝑛 ) ↑ 2 ) ) ) |
| 25 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 26 | 25 | a1i | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 2 ↑ 2 ) = 4 ) |
| 27 | sqmul | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑚 · 𝑛 ) ↑ 2 ) = ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) | |
| 28 | 27 | ancoms | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑚 · 𝑛 ) ↑ 2 ) = ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) |
| 29 | 26 28 | oveq12d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 2 ↑ 2 ) · ( ( 𝑚 · 𝑛 ) ↑ 2 ) ) = ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) |
| 30 | 24 29 | eqtrd | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) = ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) |
| 31 | 30 | oveq1d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) = ( ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 32 | 4cn | ⊢ 4 ∈ ℂ | |
| 33 | subdir | ⊢ ( ( 4 ∈ ℂ ∧ 2 ∈ ℂ ∧ ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ∈ ℂ ) → ( ( 4 − 2 ) · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) = ( ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) | |
| 34 | 32 7 10 33 | mp3an12i | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 4 − 2 ) · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) = ( ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 35 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 36 | 32 7 7 35 | subaddrii | ⊢ ( 4 − 2 ) = 2 |
| 37 | 36 | oveq1i | ⊢ ( ( 4 − 2 ) · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) = ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) |
| 38 | 34 37 | eqtr3di | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) = ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) |
| 39 | 31 38 | eqtrd | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) = ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) = ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 41 | 22 40 | eqtrd | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 42 | 41 | oveq1d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 43 | 21 42 | eqtrd | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 44 | binom2sub | ⊢ ( ( ( 𝑚 ↑ 2 ) ∈ ℂ ∧ ( 𝑛 ↑ 2 ) ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | |
| 45 | 4 8 44 | syl2anr | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) |
| 47 | binom2 | ⊢ ( ( ( 𝑚 ↑ 2 ) ∈ ℂ ∧ ( 𝑛 ↑ 2 ) ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | |
| 48 | 4 8 47 | syl2anr | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 49 | 43 46 48 | 3eqtr4d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) |
| 50 | 49 | 3adant3 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) |
| 51 | 50 | oveq2d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 ↑ 2 ) · ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) |
| 52 | simp3 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → 𝑘 ∈ ℂ ) | |
| 53 | 4 | 3ad2ant2 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑚 ↑ 2 ) ∈ ℂ ) |
| 54 | 8 | 3ad2ant1 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 55 | 53 54 | subcld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∈ ℂ ) |
| 56 | 52 55 | sqmuld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) = ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) |
| 57 | 17 | 3adant3 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑚 · 𝑛 ) ∈ ℂ ) |
| 58 | 7 57 18 | sylancr | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 2 · ( 𝑚 · 𝑛 ) ) ∈ ℂ ) |
| 59 | 52 58 | sqmuld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) = ( ( 𝑘 ↑ 2 ) · ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) |
| 60 | 56 59 | oveq12d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) + ( ( 𝑘 ↑ 2 ) · ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 61 | sqcl | ⊢ ( 𝑘 ∈ ℂ → ( 𝑘 ↑ 2 ) ∈ ℂ ) | |
| 62 | 61 | 3ad2ant3 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑘 ↑ 2 ) ∈ ℂ ) |
| 63 | 55 | sqcld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) ∈ ℂ ) |
| 64 | 58 | sqcld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 65 | 62 63 64 | adddid | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 ↑ 2 ) · ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) + ( ( 𝑘 ↑ 2 ) · ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 66 | 60 65 | eqtr4d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( 𝑘 ↑ 2 ) · ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 67 | 53 54 | addcld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ∈ ℂ ) |
| 68 | 52 67 | sqmuld | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) = ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) |
| 69 | 51 66 68 | 3eqtr4d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) |
| 70 | 1 2 3 69 | syl3an | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) |
| 71 | oveq1 | ⊢ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) → ( 𝐴 ↑ 2 ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) | |
| 72 | oveq1 | ⊢ ( 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) → ( 𝐵 ↑ 2 ) = ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) | |
| 73 | 71 72 | oveqan12d | ⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 74 | 73 | 3adant3 | ⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 75 | oveq1 | ⊢ ( 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐶 ↑ 2 ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) | |
| 76 | 75 | 3ad2ant3 | ⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( 𝐶 ↑ 2 ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) |
| 77 | 74 76 | eqeq12d | ⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ↔ ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) ) |
| 78 | 70 77 | syl5ibrcom | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 79 | 78 | 3expa | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 80 | 79 | rexlimdva | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 81 | 80 | rexlimivv | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |