This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite products in a power structure are taken componentwise. Compare pwsgsum . (Contributed by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsgprod.y | |- Y = ( R ^s I ) |
|
| pwsgprod.b | |- B = ( Base ` R ) |
||
| pwsgprod.o | |- .1. = ( 1r ` Y ) |
||
| pwsgprod.m | |- M = ( mulGrp ` Y ) |
||
| pwsgprod.t | |- T = ( mulGrp ` R ) |
||
| pwsgprod.i | |- ( ph -> I e. V ) |
||
| pwsgprod.j | |- ( ph -> J e. W ) |
||
| pwsgprod.r | |- ( ph -> R e. CRing ) |
||
| pwsgprod.f | |- ( ( ph /\ ( x e. I /\ y e. J ) ) -> U e. B ) |
||
| pwsgprod.w | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .1. ) |
||
| Assertion | pwsgprod | |- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( T gsum ( y e. J |-> U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgprod.y | |- Y = ( R ^s I ) |
|
| 2 | pwsgprod.b | |- B = ( Base ` R ) |
|
| 3 | pwsgprod.o | |- .1. = ( 1r ` Y ) |
|
| 4 | pwsgprod.m | |- M = ( mulGrp ` Y ) |
|
| 5 | pwsgprod.t | |- T = ( mulGrp ` R ) |
|
| 6 | pwsgprod.i | |- ( ph -> I e. V ) |
|
| 7 | pwsgprod.j | |- ( ph -> J e. W ) |
|
| 8 | pwsgprod.r | |- ( ph -> R e. CRing ) |
|
| 9 | pwsgprod.f | |- ( ( ph /\ ( x e. I /\ y e. J ) ) -> U e. B ) |
|
| 10 | pwsgprod.w | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .1. ) |
|
| 11 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 12 | 4 11 | mgpbas | |- ( Base ` Y ) = ( Base ` M ) |
| 13 | 4 3 | ringidval | |- .1. = ( 0g ` M ) |
| 14 | 1 | pwscrng | |- ( ( R e. CRing /\ I e. V ) -> Y e. CRing ) |
| 15 | 8 6 14 | syl2anc | |- ( ph -> Y e. CRing ) |
| 16 | 4 | crngmgp | |- ( Y e. CRing -> M e. CMnd ) |
| 17 | 15 16 | syl | |- ( ph -> M e. CMnd ) |
| 18 | 8 | adantr | |- ( ( ph /\ y e. J ) -> R e. CRing ) |
| 19 | 6 | adantr | |- ( ( ph /\ y e. J ) -> I e. V ) |
| 20 | 9 | anassrs | |- ( ( ( ph /\ x e. I ) /\ y e. J ) -> U e. B ) |
| 21 | 20 | an32s | |- ( ( ( ph /\ y e. J ) /\ x e. I ) -> U e. B ) |
| 22 | 21 | fmpttd | |- ( ( ph /\ y e. J ) -> ( x e. I |-> U ) : I --> B ) |
| 23 | 1 2 11 18 19 22 | pwselbasr | |- ( ( ph /\ y e. J ) -> ( x e. I |-> U ) e. ( Base ` Y ) ) |
| 24 | 23 | fmpttd | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) : J --> ( Base ` Y ) ) |
| 25 | 12 13 17 7 24 10 | gsumcl | |- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) e. ( Base ` Y ) ) |
| 26 | 1 2 11 8 6 25 | pwselbas | |- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) : I --> B ) |
| 27 | 26 | ffnd | |- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) Fn I ) |
| 28 | nfcv | |- F/_ x M |
|
| 29 | nfcv | |- F/_ x gsum |
|
| 30 | nfcv | |- F/_ x J |
|
| 31 | nfmpt1 | |- F/_ x ( x e. I |-> U ) |
|
| 32 | 30 31 | nfmpt | |- F/_ x ( y e. J |-> ( x e. I |-> U ) ) |
| 33 | 28 29 32 | nfov | |- F/_ x ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) |
| 34 | 33 | dffn5f | |- ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) Fn I <-> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 35 | 27 34 | sylib | |- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 36 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 37 | eqid | |- ( x e. I |-> U ) = ( x e. I |-> U ) |
|
| 38 | 37 | fvmpt2 | |- ( ( x e. I /\ U e. B ) -> ( ( x e. I |-> U ) ` x ) = U ) |
| 39 | 36 20 38 | syl2an2r | |- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( ( x e. I |-> U ) ` x ) = U ) |
| 40 | 39 | mpteq2dva | |- ( ( ph /\ x e. I ) -> ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) = ( y e. J |-> U ) ) |
| 41 | 40 | oveq2d | |- ( ( ph /\ x e. I ) -> ( T gsum ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) ) = ( T gsum ( y e. J |-> U ) ) ) |
| 42 | 17 | adantr | |- ( ( ph /\ x e. I ) -> M e. CMnd ) |
| 43 | 5 | crngmgp | |- ( R e. CRing -> T e. CMnd ) |
| 44 | 8 43 | syl | |- ( ph -> T e. CMnd ) |
| 45 | 44 | cmnmndd | |- ( ph -> T e. Mnd ) |
| 46 | 45 | adantr | |- ( ( ph /\ x e. I ) -> T e. Mnd ) |
| 47 | 7 | adantr | |- ( ( ph /\ x e. I ) -> J e. W ) |
| 48 | 8 | crngringd | |- ( ph -> R e. Ring ) |
| 49 | 48 | adantr | |- ( ( ph /\ x e. I ) -> R e. Ring ) |
| 50 | 6 | adantr | |- ( ( ph /\ x e. I ) -> I e. V ) |
| 51 | 1 11 4 5 49 50 36 | pwspjmhmmgpd | |- ( ( ph /\ x e. I ) -> ( a e. ( Base ` Y ) |-> ( a ` x ) ) e. ( M MndHom T ) ) |
| 52 | 23 | adantlr | |- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( x e. I |-> U ) e. ( Base ` Y ) ) |
| 53 | 10 | adantr | |- ( ( ph /\ x e. I ) -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .1. ) |
| 54 | fveq1 | |- ( a = ( x e. I |-> U ) -> ( a ` x ) = ( ( x e. I |-> U ) ` x ) ) |
|
| 55 | fveq1 | |- ( a = ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) -> ( a ` x ) = ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
|
| 56 | 12 13 42 46 47 51 52 53 54 55 | gsummhm2 | |- ( ( ph /\ x e. I ) -> ( T gsum ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) ) = ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
| 57 | 41 56 | eqtr3d | |- ( ( ph /\ x e. I ) -> ( T gsum ( y e. J |-> U ) ) = ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
| 58 | 57 | mpteq2dva | |- ( ph -> ( x e. I |-> ( T gsum ( y e. J |-> U ) ) ) = ( x e. I |-> ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 59 | 35 58 | eqtr4d | |- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( T gsum ( y e. J |-> U ) ) ) ) |