This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummhm2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummhm2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummhm2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummhm2.h | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) | ||
| gsummhm2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsummhm2.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) ) | ||
| gsummhm2.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsummhm2.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | ||
| gsummhm2.1 | ⊢ ( 𝑥 = 𝑋 → 𝐶 = 𝐷 ) | ||
| gsummhm2.2 | ⊢ ( 𝑥 = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → 𝐶 = 𝐸 ) | ||
| Assertion | gsummhm2 | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummhm2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummhm2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummhm2.h | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) | |
| 5 | gsummhm2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsummhm2.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 7 | gsummhm2.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | gsummhm2.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | |
| 9 | gsummhm2.1 | ⊢ ( 𝑥 = 𝑋 → 𝐶 = 𝐷 ) | |
| 10 | gsummhm2.2 | ⊢ ( 𝑥 = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → 𝐶 = 𝐸 ) | |
| 11 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐵 ) |
| 12 | 1 2 3 4 5 6 11 8 | gsummhm | ⊢ ( 𝜑 → ( 𝐻 Σg ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |
| 13 | eqidd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) | |
| 14 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) | |
| 15 | 7 13 14 9 | fmptco | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝜑 → ( 𝐻 Σg ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) ) |
| 17 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) | |
| 18 | 1 2 3 5 11 8 | gsumcl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ∈ 𝐵 ) |
| 19 | 10 | eleq1d | ⊢ ( 𝑥 = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → ( 𝐶 ∈ ( Base ‘ 𝐻 ) ↔ 𝐸 ∈ ( Base ‘ 𝐻 ) ) ) |
| 20 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 21 | 1 20 | mhmf | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 22 | 6 21 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 23 | 17 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝐶 ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 24 | 22 23 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝐶 ∈ ( Base ‘ 𝐻 ) ) |
| 25 | 19 24 18 | rspcdva | ⊢ ( 𝜑 → 𝐸 ∈ ( Base ‘ 𝐻 ) ) |
| 26 | 17 10 18 25 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = 𝐸 ) |
| 27 | 12 16 26 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) = 𝐸 ) |