This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation of the monoid of the power set of a class A under union. (Contributed by AV, 27-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwmnd.b | ⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 | |
| pwmnd.p | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) | ||
| Assertion | pwmndgplus | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( +g ‘ 𝑀 ) 𝑌 ) = ( 𝑋 ∪ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwmnd.b | ⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 | |
| 2 | pwmnd.p | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) ) |
| 4 | uneq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 ∪ 𝑦 ) = ( 𝑋 ∪ 𝑌 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 ∪ 𝑦 ) = ( 𝑋 ∪ 𝑌 ) ) |
| 6 | simpl | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 ) | |
| 7 | simpr | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑌 ∈ 𝒫 𝐴 ) | |
| 8 | unexg | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ∈ V ) | |
| 9 | 3 5 6 7 8 | ovmpod | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( +g ‘ 𝑀 ) 𝑌 ) = ( 𝑋 ∪ 𝑌 ) ) |