This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a class A is a monoid under union. (Contributed by AV, 27-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwmnd.b | |- ( Base ` M ) = ~P A |
|
| pwmnd.p | |- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
||
| Assertion | pwmnd | |- M e. Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwmnd.b | |- ( Base ` M ) = ~P A |
|
| 2 | pwmnd.p | |- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
|
| 3 | 1 | eleq2i | |- ( a e. ( Base ` M ) <-> a e. ~P A ) |
| 4 | 1 | eleq2i | |- ( b e. ( Base ` M ) <-> b e. ~P A ) |
| 5 | pwuncl | |- ( ( a e. ~P A /\ b e. ~P A ) -> ( a u. b ) e. ~P A ) |
|
| 6 | 1 2 | pwmndgplus | |- ( ( a e. ~P A /\ b e. ~P A ) -> ( a ( +g ` M ) b ) = ( a u. b ) ) |
| 7 | 1 | a1i | |- ( ( a e. ~P A /\ b e. ~P A ) -> ( Base ` M ) = ~P A ) |
| 8 | 5 6 7 | 3eltr4d | |- ( ( a e. ~P A /\ b e. ~P A ) -> ( a ( +g ` M ) b ) e. ( Base ` M ) ) |
| 9 | 1 | eleq2i | |- ( c e. ( Base ` M ) <-> c e. ~P A ) |
| 10 | unass | |- ( ( a u. b ) u. c ) = ( a u. ( b u. c ) ) |
|
| 11 | 6 | adantr | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) b ) = ( a u. b ) ) |
| 12 | 11 | oveq1d | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( a u. b ) ( +g ` M ) c ) ) |
| 13 | 1 2 | pwmndgplus | |- ( ( ( a u. b ) e. ~P A /\ c e. ~P A ) -> ( ( a u. b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
| 14 | 5 13 | sylan | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a u. b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
| 15 | 12 14 | eqtrd | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
| 16 | 1 2 | pwmndgplus | |- ( ( b e. ~P A /\ c e. ~P A ) -> ( b ( +g ` M ) c ) = ( b u. c ) ) |
| 17 | 16 | adantll | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( b ( +g ` M ) c ) = ( b u. c ) ) |
| 18 | 17 | oveq2d | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( a ( +g ` M ) ( b u. c ) ) ) |
| 19 | simpll | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> a e. ~P A ) |
|
| 20 | pwuncl | |- ( ( b e. ~P A /\ c e. ~P A ) -> ( b u. c ) e. ~P A ) |
|
| 21 | 20 | adantll | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( b u. c ) e. ~P A ) |
| 22 | 19 21 | jca | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a e. ~P A /\ ( b u. c ) e. ~P A ) ) |
| 23 | 1 2 | pwmndgplus | |- ( ( a e. ~P A /\ ( b u. c ) e. ~P A ) -> ( a ( +g ` M ) ( b u. c ) ) = ( a u. ( b u. c ) ) ) |
| 24 | 22 23 | syl | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b u. c ) ) = ( a u. ( b u. c ) ) ) |
| 25 | 18 24 | eqtrd | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( a u. ( b u. c ) ) ) |
| 26 | 10 15 25 | 3eqtr4a | |- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
| 27 | 26 | ex | |- ( ( a e. ~P A /\ b e. ~P A ) -> ( c e. ~P A -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
| 28 | 9 27 | biimtrid | |- ( ( a e. ~P A /\ b e. ~P A ) -> ( c e. ( Base ` M ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
| 29 | 28 | ralrimiv | |- ( ( a e. ~P A /\ b e. ~P A ) -> A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
| 30 | 8 29 | jca | |- ( ( a e. ~P A /\ b e. ~P A ) -> ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
| 31 | 3 4 30 | syl2anb | |- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
| 32 | 31 | rgen2 | |- A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
| 33 | 0ex | |- (/) e. _V |
|
| 34 | eleq1 | |- ( e = (/) -> ( e e. ( Base ` M ) <-> (/) e. ( Base ` M ) ) ) |
|
| 35 | oveq1 | |- ( e = (/) -> ( e ( +g ` M ) a ) = ( (/) ( +g ` M ) a ) ) |
|
| 36 | 35 | eqeq1d | |- ( e = (/) -> ( ( e ( +g ` M ) a ) = a <-> ( (/) ( +g ` M ) a ) = a ) ) |
| 37 | oveq2 | |- ( e = (/) -> ( a ( +g ` M ) e ) = ( a ( +g ` M ) (/) ) ) |
|
| 38 | 37 | eqeq1d | |- ( e = (/) -> ( ( a ( +g ` M ) e ) = a <-> ( a ( +g ` M ) (/) ) = a ) ) |
| 39 | 36 38 | anbi12d | |- ( e = (/) -> ( ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) |
| 40 | 39 | ralbidv | |- ( e = (/) -> ( A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) |
| 41 | 34 40 | anbi12d | |- ( e = (/) -> ( ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) <-> ( (/) e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) ) |
| 42 | 0elpw | |- (/) e. ~P A |
|
| 43 | 42 1 | eleqtrri | |- (/) e. ( Base ` M ) |
| 44 | 1 2 | pwmndgplus | |- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( (/) ( +g ` M ) a ) = ( (/) u. a ) ) |
| 45 | 0un | |- ( (/) u. a ) = a |
|
| 46 | 44 45 | eqtrdi | |- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( (/) ( +g ` M ) a ) = a ) |
| 47 | 1 2 | pwmndgplus | |- ( ( a e. ~P A /\ (/) e. ~P A ) -> ( a ( +g ` M ) (/) ) = ( a u. (/) ) ) |
| 48 | 47 | ancoms | |- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( a ( +g ` M ) (/) ) = ( a u. (/) ) ) |
| 49 | un0 | |- ( a u. (/) ) = a |
|
| 50 | 48 49 | eqtrdi | |- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( a ( +g ` M ) (/) ) = a ) |
| 51 | 46 50 | jca | |- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
| 52 | 42 51 | mpan | |- ( a e. ~P A -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
| 53 | 3 52 | sylbi | |- ( a e. ( Base ` M ) -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
| 54 | 53 | rgen | |- A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) |
| 55 | 43 54 | pm3.2i | |- ( (/) e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
| 56 | 33 41 55 | ceqsexv2d | |- E. e ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) |
| 57 | df-rex | |- ( E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> E. e ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) ) |
|
| 58 | 56 57 | mpbir | |- E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) |
| 59 | 32 58 | pm3.2i | |- ( A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) /\ E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) |
| 60 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 61 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 62 | 60 61 | ismnd | |- ( M e. Mnd <-> ( A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) /\ E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) ) |
| 63 | 59 62 | mpbir | |- M e. Mnd |