This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projection map is an open map. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptpjcn.1 | ⊢ 𝑌 = ∪ 𝐽 | |
| ptpjcn.2 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | ||
| Assertion | ptpjopn | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑈 ) ∈ ( 𝐹 ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptpjcn.1 | ⊢ 𝑌 = ∪ 𝐽 | |
| 2 | ptpjcn.2 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | |
| 3 | df-ima | ⊢ ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑈 ) = ran ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) ↾ 𝑈 ) | |
| 4 | elssuni | ⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽 ) | |
| 5 | 4 1 | sseqtrrdi | ⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ 𝑌 ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ 𝑌 ) |
| 7 | 6 | resmptd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) ↾ 𝑈 ) = ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
| 8 | 7 | rneqd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ran ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) ↾ 𝑈 ) = ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
| 9 | 3 8 | eqtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑈 ) = ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
| 10 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Top → 𝐹 Fn 𝐴 ) | |
| 11 | eqid | ⊢ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 12 | 11 | ptval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 13 | 10 12 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 14 | 2 13 | eqtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐽 = ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → 𝐽 = ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 16 | 15 | eleq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝑈 ∈ 𝐽 ↔ 𝑈 ∈ ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) ) |
| 17 | 16 | biimpa | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ∈ ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 18 | tg2 | ⊢ ( ( 𝑈 ∈ ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ∧ 𝑠 ∈ 𝑈 ) → ∃ 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ) | |
| 19 | 17 18 | sylan | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ∃ 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ) |
| 20 | vex | ⊢ 𝑤 ∈ V | |
| 21 | eqeq1 | ⊢ ( 𝑠 = 𝑤 → ( 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | |
| 22 | 21 | anbi2d | ⊢ ( 𝑠 = 𝑤 → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
| 23 | 22 | exbidv | ⊢ ( 𝑠 = 𝑤 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
| 24 | 20 23 | elab | ⊢ ( 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑦 = 𝐼 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝐼 ) ) | |
| 26 | fveq2 | ⊢ ( 𝑦 = 𝐼 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐼 ) ) | |
| 27 | 25 26 | eleq12d | ⊢ ( 𝑦 = 𝐼 → ( ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝐼 ) ∈ ( 𝐹 ‘ 𝐼 ) ) ) |
| 28 | simplr2 | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) | |
| 29 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → 𝐼 ∈ 𝐴 ) | |
| 30 | 29 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → 𝐼 ∈ 𝐴 ) |
| 31 | 27 28 30 | rspcdva | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ( 𝑔 ‘ 𝐼 ) ∈ ( 𝐹 ‘ 𝐼 ) ) |
| 32 | fveq2 | ⊢ ( 𝑦 = 𝐼 → ( 𝑠 ‘ 𝑦 ) = ( 𝑠 ‘ 𝐼 ) ) | |
| 33 | 32 25 | eleq12d | ⊢ ( 𝑦 = 𝐼 → ( ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ) ) |
| 34 | vex | ⊢ 𝑠 ∈ V | |
| 35 | 34 | elixp | ⊢ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑠 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 36 | 35 | simprbi | ⊢ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ) |
| 37 | 36 | ad2antrl | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ) |
| 38 | 33 37 30 | rspcdva | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ) |
| 39 | simplrr | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) | |
| 40 | simplrl | ⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) ∧ 𝑛 = 𝐼 ) → 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) | |
| 41 | fveq2 | ⊢ ( 𝑛 = 𝐼 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝐼 ) ) | |
| 42 | 41 | adantl | ⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) ∧ 𝑛 = 𝐼 ) → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝐼 ) ) |
| 43 | 40 42 | eleqtrrd | ⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) ∧ 𝑛 = 𝐼 ) → 𝑘 ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 44 | fveq2 | ⊢ ( 𝑦 = 𝑛 → ( 𝑠 ‘ 𝑦 ) = ( 𝑠 ‘ 𝑛 ) ) | |
| 45 | fveq2 | ⊢ ( 𝑦 = 𝑛 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑛 ) ) | |
| 46 | 44 45 | eleq12d | ⊢ ( 𝑦 = 𝑛 → ( ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑠 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
| 47 | simplrl | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) | |
| 48 | 47 36 | syl | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ) |
| 49 | simprr | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → 𝑛 ∈ 𝐴 ) | |
| 50 | 46 48 49 | rspcdva | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → ( 𝑠 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) ∧ ¬ 𝑛 = 𝐼 ) → ( 𝑠 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 52 | 43 51 | ifclda | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 53 | 52 | anassrs | ⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) ∧ 𝑛 ∈ 𝐴 ) → if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 54 | 53 | ralrimiva | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 55 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → 𝐴 ∈ 𝑉 ) | |
| 56 | 55 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → 𝐴 ∈ 𝑉 ) |
| 57 | mptelixpg | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ( 𝑔 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ( 𝑔 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
| 59 | 54 58 | mpbird | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ( 𝑔 ‘ 𝑛 ) ) |
| 60 | fveq2 | ⊢ ( 𝑛 = 𝑦 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑦 ) ) | |
| 61 | 60 | cbvixpv | ⊢ X 𝑛 ∈ 𝐴 ( 𝑔 ‘ 𝑛 ) = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) |
| 62 | 59 61 | eleqtrdi | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 63 | 39 62 | sseldd | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ 𝑈 ) |
| 64 | 30 | adantr | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → 𝐼 ∈ 𝐴 ) |
| 65 | iftrue | ⊢ ( 𝑛 = 𝐼 → if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) = 𝑘 ) | |
| 66 | eqid | ⊢ ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) | |
| 67 | vex | ⊢ 𝑘 ∈ V | |
| 68 | 65 66 67 | fvmpt | ⊢ ( 𝐼 ∈ 𝐴 → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) = 𝑘 ) |
| 69 | 64 68 | syl | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) = 𝑘 ) |
| 70 | 69 | eqcomd | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → 𝑘 = ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) ) |
| 71 | fveq1 | ⊢ ( 𝑥 = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) → ( 𝑥 ‘ 𝐼 ) = ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) ) | |
| 72 | 71 | rspceeqv | ⊢ ( ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ 𝑈 ∧ 𝑘 = ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) ) → ∃ 𝑥 ∈ 𝑈 𝑘 = ( 𝑥 ‘ 𝐼 ) ) |
| 73 | 63 70 72 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ∃ 𝑥 ∈ 𝑈 𝑘 = ( 𝑥 ‘ 𝐼 ) ) |
| 74 | eqid | ⊢ ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) | |
| 75 | 74 | elrnmpt | ⊢ ( 𝑘 ∈ V → ( 𝑘 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ↔ ∃ 𝑥 ∈ 𝑈 𝑘 = ( 𝑥 ‘ 𝐼 ) ) ) |
| 76 | 75 | elv | ⊢ ( 𝑘 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ↔ ∃ 𝑥 ∈ 𝑈 𝑘 = ( 𝑥 ‘ 𝐼 ) ) |
| 77 | 73 76 | sylibr | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → 𝑘 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
| 78 | 77 | ex | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) → 𝑘 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
| 79 | 78 | ssrdv | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ( 𝑔 ‘ 𝐼 ) ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
| 80 | eleq2 | ⊢ ( 𝑧 = ( 𝑔 ‘ 𝐼 ) → ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ↔ ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ) ) | |
| 81 | sseq1 | ⊢ ( 𝑧 = ( 𝑔 ‘ 𝐼 ) → ( 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ↔ ( 𝑔 ‘ 𝐼 ) ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) | |
| 82 | 80 81 | anbi12d | ⊢ ( 𝑧 = ( 𝑔 ‘ 𝐼 ) → ( ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ( ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ∧ ( 𝑔 ‘ 𝐼 ) ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
| 83 | 82 | rspcev | ⊢ ( ( ( 𝑔 ‘ 𝐼 ) ∈ ( 𝐹 ‘ 𝐼 ) ∧ ( ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ∧ ( 𝑔 ‘ 𝐼 ) ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
| 84 | 31 38 79 83 | syl12anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
| 85 | 84 | ex | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
| 86 | eleq2 | ⊢ ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑠 ∈ 𝑤 ↔ 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | |
| 87 | sseq1 | ⊢ ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑤 ⊆ 𝑈 ↔ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) | |
| 88 | 86 87 | anbi12d | ⊢ ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ↔ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ) |
| 89 | 88 | imbi1d | ⊢ ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ↔ ( ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
| 90 | 85 89 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
| 91 | 90 | expimpd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
| 92 | 91 | exlimdv | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
| 93 | 24 92 | biimtrid | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ( 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
| 94 | 93 | rexlimdv | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ( ∃ 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
| 95 | 19 94 | mpd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
| 96 | 95 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑠 ∈ 𝑈 ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
| 97 | fvex | ⊢ ( 𝑠 ‘ 𝐼 ) ∈ V | |
| 98 | 97 | rgenw | ⊢ ∀ 𝑠 ∈ 𝑈 ( 𝑠 ‘ 𝐼 ) ∈ V |
| 99 | fveq1 | ⊢ ( 𝑥 = 𝑠 → ( 𝑥 ‘ 𝐼 ) = ( 𝑠 ‘ 𝐼 ) ) | |
| 100 | 99 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑠 ∈ 𝑈 ↦ ( 𝑠 ‘ 𝐼 ) ) |
| 101 | eleq1 | ⊢ ( 𝑦 = ( 𝑠 ‘ 𝐼 ) → ( 𝑦 ∈ 𝑧 ↔ ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ) ) | |
| 102 | 101 | anbi1d | ⊢ ( 𝑦 = ( 𝑠 ‘ 𝐼 ) → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
| 103 | 102 | rexbidv | ⊢ ( 𝑦 = ( 𝑠 ‘ 𝐼 ) → ( ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
| 104 | 100 103 | ralrnmptw | ⊢ ( ∀ 𝑠 ∈ 𝑈 ( 𝑠 ‘ 𝐼 ) ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ∀ 𝑠 ∈ 𝑈 ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
| 105 | 98 104 | ax-mp | ⊢ ( ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ∀ 𝑠 ∈ 𝑈 ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
| 106 | 96 105 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
| 107 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → 𝐹 : 𝐴 ⟶ Top ) | |
| 108 | 107 29 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 ‘ 𝐼 ) ∈ Top ) |
| 109 | eltop2 | ⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ Top → ( ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐹 ‘ 𝐼 ) ↔ ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) | |
| 110 | 108 109 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐹 ‘ 𝐼 ) ↔ ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
| 111 | 106 110 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐹 ‘ 𝐼 ) ) |
| 112 | 9 111 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑈 ) ∈ ( 𝐹 ‘ 𝐼 ) ) |