This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrplusg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrplusg.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrplusg.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| psrplusg.p | ⊢ ✚ = ( +g ‘ 𝑆 ) | ||
| Assertion | psrplusg | ⊢ ✚ = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrplusg.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | psrplusg.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | psrplusg.p | ⊢ ✚ = ( +g ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 8 | eqid | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 9 | simpl | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐼 ∈ V ) | |
| 10 | 1 5 8 2 9 | psrbas | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ) |
| 11 | eqid | ⊢ ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) | |
| 12 | eqid | ⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) | |
| 13 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) | |
| 14 | eqidd | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) = ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) ) | |
| 15 | simpr | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) | |
| 16 | 1 5 3 6 7 8 10 11 12 13 14 9 15 | psrval | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( +g ‘ 𝑆 ) = ( +g ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 18 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 19 | 18 18 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 20 | ofexg | ⊢ ( ( 𝐵 × 𝐵 ) ∈ V → ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) | |
| 21 | psrvalstr | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) Struct 〈 1 , 9 〉 | |
| 22 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 23 | snsstp2 | ⊢ { 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } | |
| 24 | ssun1 | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) | |
| 25 | 23 24 | sstri | ⊢ { 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) |
| 26 | 21 22 25 | strfv | ⊢ ( ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) ∈ V → ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) = ( +g ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 27 | 19 20 26 | mp2b | ⊢ ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) = ( +g ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
| 28 | 17 4 27 | 3eqtr4g | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ✚ = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) ) |
| 29 | reldmpsr | ⊢ Rel dom mPwSer | |
| 30 | 29 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 31 | 1 30 | eqtrid | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ∅ ) |
| 32 | 31 | fveq2d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( +g ‘ 𝑆 ) = ( +g ‘ ∅ ) ) |
| 33 | 22 | str0 | ⊢ ∅ = ( +g ‘ ∅ ) |
| 34 | 32 4 33 | 3eqtr4g | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ✚ = ∅ ) |
| 35 | 31 | fveq2d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) ) |
| 36 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 37 | 35 2 36 | 3eqtr4g | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
| 38 | 37 | xpeq2d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐵 × 𝐵 ) = ( 𝐵 × ∅ ) ) |
| 39 | xp0 | ⊢ ( 𝐵 × ∅ ) = ∅ | |
| 40 | 38 39 | eqtrdi | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐵 × 𝐵 ) = ∅ ) |
| 41 | 40 | reseq2d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) = ( ∘f + ↾ ∅ ) ) |
| 42 | res0 | ⊢ ( ∘f + ↾ ∅ ) = ∅ | |
| 43 | 41 42 | eqtrdi | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) = ∅ ) |
| 44 | 34 43 | eqtr4d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ✚ = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) ) |
| 45 | 28 44 | pm2.61i | ⊢ ✚ = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) |