This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrplusgpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| psrplusgpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | ||
| psrplusgpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | ||
| Assertion | mplbaspropd | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusgpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | psrplusgpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | |
| 3 | psrplusgpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | |
| 4 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
| 5 | 4 | psrbaspropd | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 7 | 1 2 3 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 8 | 7 | breq2d | ⊢ ( 𝜑 → ( 𝑎 finSupp ( 0g ‘ 𝑅 ) ↔ 𝑎 finSupp ( 0g ‘ 𝑆 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( 𝑎 finSupp ( 0g ‘ 𝑅 ) ↔ 𝑎 finSupp ( 0g ‘ 𝑆 ) ) ) |
| 10 | 6 9 | rabeqbidv | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → { 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } = { 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∣ 𝑎 finSupp ( 0g ‘ 𝑆 ) } ) |
| 11 | eqid | ⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) | |
| 12 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 13 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 14 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) | |
| 16 | 11 12 13 14 15 | mplbas | ⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = { 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } |
| 17 | eqid | ⊢ ( 𝐼 mPoly 𝑆 ) = ( 𝐼 mPoly 𝑆 ) | |
| 18 | eqid | ⊢ ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 ) | |
| 19 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) | |
| 20 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 21 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) | |
| 22 | 17 18 19 20 21 | mplbas | ⊢ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) = { 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∣ 𝑎 finSupp ( 0g ‘ 𝑆 ) } |
| 23 | 10 16 22 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
| 24 | reldmmpl | ⊢ Rel dom mPoly | |
| 25 | 24 | ovprc1 | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPoly 𝑅 ) = ∅ ) |
| 26 | 24 | ovprc1 | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPoly 𝑆 ) = ∅ ) |
| 27 | 25 26 | eqtr4d | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑆 ) ) |
| 28 | 27 | fveq2d | ⊢ ( ¬ 𝐼 ∈ V → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
| 30 | 23 29 | pm2.61dan | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |