This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbaglesupp | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ 𝐺 “ ℕ ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | df-ofr | ⊢ ∘r ≤ = { 〈 𝑎 , 𝑏 〉 ∣ ∀ 𝑐 ∈ ( dom 𝑎 ∩ dom 𝑏 ) ( 𝑎 ‘ 𝑐 ) ≤ ( 𝑏 ‘ 𝑐 ) } | |
| 3 | 2 | relopabiv | ⊢ Rel ∘r ≤ |
| 4 | 3 | brrelex1i | ⊢ ( 𝐺 ∘r ≤ 𝐹 → 𝐺 ∈ V ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 ∈ V ) |
| 6 | simp2 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 : 𝐼 ⟶ ℕ0 ) | |
| 7 | fcdmnn0suppg | ⊢ ( ( 𝐺 ∈ V ∧ 𝐺 : 𝐼 ⟶ ℕ0 ) → ( 𝐺 supp 0 ) = ( ◡ 𝐺 “ ℕ ) ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐺 supp 0 ) = ( ◡ 𝐺 “ ℕ ) ) |
| 9 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) → 𝑥 ∈ 𝐼 ) | |
| 10 | simp3 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 ∘r ≤ 𝐹 ) | |
| 11 | 6 | ffnd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 Fn 𝐼 ) |
| 12 | 1 | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 14 | 13 | ffnd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 Fn 𝐼 ) |
| 15 | simp1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 ∈ 𝐷 ) | |
| 16 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 17 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 18 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 19 | 11 14 5 15 16 17 18 | ofrfvalg | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐺 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 | 10 19 | mpbid | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ 𝐼 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 21 | 20 | r19.21bi | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 22 | 9 21 | sylan2 | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 23 | fcdmnn0suppg | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) ) | |
| 24 | 15 13 23 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) ) |
| 25 | eqimss | ⊢ ( ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ℕ ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
| 27 | c0ex | ⊢ 0 ∈ V | |
| 28 | 27 | a1i | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 0 ∈ V ) |
| 29 | 13 26 15 28 | suppssrg | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 30 | 22 29 | breqtrd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 0 ) |
| 31 | ffvelcdm | ⊢ ( ( 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℕ0 ) | |
| 32 | 6 9 31 | syl2an | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℕ0 ) |
| 33 | 32 | nn0ge0d | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → 0 ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 34 | 32 | nn0red | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 35 | 0re | ⊢ 0 ∈ ℝ | |
| 36 | letri3 | ⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) = 0 ↔ ( ( 𝐺 ‘ 𝑥 ) ≤ 0 ∧ 0 ≤ ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 37 | 34 35 36 | sylancl | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( ( 𝐺 ‘ 𝑥 ) = 0 ↔ ( ( 𝐺 ‘ 𝑥 ) ≤ 0 ∧ 0 ≤ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 | 30 33 37 | mpbir2and | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 𝐺 ‘ 𝑥 ) = 0 ) |
| 39 | 6 38 | suppss | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐺 supp 0 ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
| 40 | 8 39 | eqsstrrd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ 𝐺 “ ℕ ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |