This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| Assertion | psrbaglesupp | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' G " NN ) C_ ( `' F " NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | df-ofr | |- oR <_ = { <. a , b >. | A. c e. ( dom a i^i dom b ) ( a ` c ) <_ ( b ` c ) } |
|
| 3 | 2 | relopabiv | |- Rel oR <_ |
| 4 | 3 | brrelex1i | |- ( G oR <_ F -> G e. _V ) |
| 5 | 4 | 3ad2ant3 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G e. _V ) |
| 6 | simp2 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G : I --> NN0 ) |
|
| 7 | fcdmnn0suppg | |- ( ( G e. _V /\ G : I --> NN0 ) -> ( G supp 0 ) = ( `' G " NN ) ) |
|
| 8 | 5 6 7 | syl2anc | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( G supp 0 ) = ( `' G " NN ) ) |
| 9 | eldifi | |- ( x e. ( I \ ( `' F " NN ) ) -> x e. I ) |
|
| 10 | simp3 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G oR <_ F ) |
|
| 11 | 6 | ffnd | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G Fn I ) |
| 12 | 1 | psrbagf | |- ( F e. D -> F : I --> NN0 ) |
| 13 | 12 | 3ad2ant1 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> F : I --> NN0 ) |
| 14 | 13 | ffnd | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> F Fn I ) |
| 15 | simp1 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> F e. D ) |
|
| 16 | inidm | |- ( I i^i I ) = I |
|
| 17 | eqidd | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( G ` x ) = ( G ` x ) ) |
|
| 18 | eqidd | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( F ` x ) = ( F ` x ) ) |
|
| 19 | 11 14 5 15 16 17 18 | ofrfvalg | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( G oR <_ F <-> A. x e. I ( G ` x ) <_ ( F ` x ) ) ) |
| 20 | 10 19 | mpbid | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> A. x e. I ( G ` x ) <_ ( F ` x ) ) |
| 21 | 20 | r19.21bi | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( G ` x ) <_ ( F ` x ) ) |
| 22 | 9 21 | sylan2 | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. ( I \ ( `' F " NN ) ) ) -> ( G ` x ) <_ ( F ` x ) ) |
| 23 | fcdmnn0suppg | |- ( ( F e. D /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |
|
| 24 | 15 13 23 | syl2anc | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F supp 0 ) = ( `' F " NN ) ) |
| 25 | eqimss | |- ( ( F supp 0 ) = ( `' F " NN ) -> ( F supp 0 ) C_ ( `' F " NN ) ) |
|
| 26 | 24 25 | syl | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F supp 0 ) C_ ( `' F " NN ) ) |
| 27 | c0ex | |- 0 e. _V |
|
| 28 | 27 | a1i | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> 0 e. _V ) |
| 29 | 13 26 15 28 | suppssrg | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. ( I \ ( `' F " NN ) ) ) -> ( F ` x ) = 0 ) |
| 30 | 22 29 | breqtrd | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. ( I \ ( `' F " NN ) ) ) -> ( G ` x ) <_ 0 ) |
| 31 | ffvelcdm | |- ( ( G : I --> NN0 /\ x e. I ) -> ( G ` x ) e. NN0 ) |
|
| 32 | 6 9 31 | syl2an | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. ( I \ ( `' F " NN ) ) ) -> ( G ` x ) e. NN0 ) |
| 33 | 32 | nn0ge0d | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. ( I \ ( `' F " NN ) ) ) -> 0 <_ ( G ` x ) ) |
| 34 | 32 | nn0red | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. ( I \ ( `' F " NN ) ) ) -> ( G ` x ) e. RR ) |
| 35 | 0re | |- 0 e. RR |
|
| 36 | letri3 | |- ( ( ( G ` x ) e. RR /\ 0 e. RR ) -> ( ( G ` x ) = 0 <-> ( ( G ` x ) <_ 0 /\ 0 <_ ( G ` x ) ) ) ) |
|
| 37 | 34 35 36 | sylancl | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. ( I \ ( `' F " NN ) ) ) -> ( ( G ` x ) = 0 <-> ( ( G ` x ) <_ 0 /\ 0 <_ ( G ` x ) ) ) ) |
| 38 | 30 33 37 | mpbir2and | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. ( I \ ( `' F " NN ) ) ) -> ( G ` x ) = 0 ) |
| 39 | 6 38 | suppss | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( G supp 0 ) C_ ( `' F " NN ) ) |
| 40 | 8 39 | eqsstrrd | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' G " NN ) C_ ( `' F " NN ) ) |