This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the function relation map. The definition is designed so that if R is a binary relation, then oR R is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ofr | ⊢ ∘r 𝑅 = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | 0 | cofr | ⊢ ∘r 𝑅 |
| 2 | vf | ⊢ 𝑓 | |
| 3 | vg | ⊢ 𝑔 | |
| 4 | vx | ⊢ 𝑥 | |
| 5 | 2 | cv | ⊢ 𝑓 |
| 6 | 5 | cdm | ⊢ dom 𝑓 |
| 7 | 3 | cv | ⊢ 𝑔 |
| 8 | 7 | cdm | ⊢ dom 𝑔 |
| 9 | 6 8 | cin | ⊢ ( dom 𝑓 ∩ dom 𝑔 ) |
| 10 | 4 | cv | ⊢ 𝑥 |
| 11 | 10 5 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 12 | 10 7 | cfv | ⊢ ( 𝑔 ‘ 𝑥 ) |
| 13 | 11 12 0 | wbr | ⊢ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) |
| 14 | 13 4 9 | wral | ⊢ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) |
| 15 | 14 2 3 | copab | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } |
| 16 | 1 15 | wceq | ⊢ ∘r 𝑅 = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } |