This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prv1n | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ¬ { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( ω × { 𝑋 } ) = ( ω × { 𝑋 } ) | |
| 2 | omex | ⊢ ω ∈ V | |
| 3 | snex | ⊢ { 𝑋 } ∈ V | |
| 4 | 2 3 | xpex | ⊢ ( ω × { 𝑋 } ) ∈ V |
| 5 | eqeq1 | ⊢ ( 𝑎 = ( ω × { 𝑋 } ) → ( 𝑎 = ( ω × { 𝑋 } ) ↔ ( ω × { 𝑋 } ) = ( ω × { 𝑋 } ) ) ) | |
| 6 | 4 5 | spcev | ⊢ ( ( ω × { 𝑋 } ) = ( ω × { 𝑋 } ) → ∃ 𝑎 𝑎 = ( ω × { 𝑋 } ) ) |
| 7 | 1 6 | mp1i | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑎 𝑎 = ( ω × { 𝑋 } ) ) |
| 8 | 3 2 | pm3.2i | ⊢ ( { 𝑋 } ∈ V ∧ ω ∈ V ) |
| 9 | elmapg | ⊢ ( ( { 𝑋 } ∈ V ∧ ω ∈ V ) → ( 𝑎 ∈ ( { 𝑋 } ↑m ω ) ↔ 𝑎 : ω ⟶ { 𝑋 } ) ) | |
| 10 | 8 9 | mp1i | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( 𝑎 ∈ ( { 𝑋 } ↑m ω ) ↔ 𝑎 : ω ⟶ { 𝑋 } ) ) |
| 11 | fconst2g | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑎 : ω ⟶ { 𝑋 } ↔ 𝑎 = ( ω × { 𝑋 } ) ) ) | |
| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( 𝑎 : ω ⟶ { 𝑋 } ↔ 𝑎 = ( ω × { 𝑋 } ) ) ) |
| 13 | 10 12 | bitrd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( 𝑎 ∈ ( { 𝑋 } ↑m ω ) ↔ 𝑎 = ( ω × { 𝑋 } ) ) ) |
| 14 | 13 | exbidv | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑎 𝑎 ∈ ( { 𝑋 } ↑m ω ) ↔ ∃ 𝑎 𝑎 = ( ω × { 𝑋 } ) ) ) |
| 15 | 7 14 | mpbird | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑎 𝑎 ∈ ( { 𝑋 } ↑m ω ) ) |
| 16 | neq0 | ⊢ ( ¬ ( { 𝑋 } ↑m ω ) = ∅ ↔ ∃ 𝑎 𝑎 ∈ ( { 𝑋 } ↑m ω ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ¬ ( { 𝑋 } ↑m ω ) = ∅ ) |
| 18 | eqcom | ⊢ ( ( { 𝑋 } ↑m ω ) = ∅ ↔ ∅ = ( { 𝑋 } ↑m ω ) ) | |
| 19 | 17 18 | sylnib | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ¬ ∅ = ( { 𝑋 } ↑m ω ) ) |
| 20 | ovex | ⊢ ( 𝐼 ∈𝑔 𝐽 ) ∈ V | |
| 21 | 3 20 | pm3.2i | ⊢ ( { 𝑋 } ∈ V ∧ ( 𝐼 ∈𝑔 𝐽 ) ∈ V ) |
| 22 | prv | ⊢ ( ( { 𝑋 } ∈ V ∧ ( 𝐼 ∈𝑔 𝐽 ) ∈ V ) → ( { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 ) ↔ ( { 𝑋 } Sat∈ ( 𝐼 ∈𝑔 𝐽 ) ) = ( { 𝑋 } ↑m ω ) ) ) | |
| 23 | 21 22 | mp1i | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 ) ↔ ( { 𝑋 } Sat∈ ( 𝐼 ∈𝑔 𝐽 ) ) = ( { 𝑋 } ↑m ω ) ) ) |
| 24 | goel | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ∈𝑔 𝐽 ) = 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) | |
| 25 | 0ex | ⊢ ∅ ∈ V | |
| 26 | 25 | snid | ⊢ ∅ ∈ { ∅ } |
| 27 | 26 | a1i | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ∅ ∈ { ∅ } ) |
| 28 | opelxpi | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → 〈 𝐼 , 𝐽 〉 ∈ ( ω × ω ) ) | |
| 29 | 27 28 | opelxpd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ∈ ( { ∅ } × ( ω × ω ) ) ) |
| 30 | 24 29 | eqeltrd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ∈𝑔 𝐽 ) ∈ ( { ∅ } × ( ω × ω ) ) ) |
| 31 | fmla0xp | ⊢ ( Fmla ‘ ∅ ) = ( { ∅ } × ( ω × ω ) ) | |
| 32 | 30 31 | eleqtrrdi | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ∈𝑔 𝐽 ) ∈ ( Fmla ‘ ∅ ) ) |
| 33 | 32 | 3adant3 | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ∈𝑔 𝐽 ) ∈ ( Fmla ‘ ∅ ) ) |
| 34 | satefvfmla0 | ⊢ ( ( { 𝑋 } ∈ V ∧ ( 𝐼 ∈𝑔 𝐽 ) ∈ ( Fmla ‘ ∅ ) ) → ( { 𝑋 } Sat∈ ( 𝐼 ∈𝑔 𝐽 ) ) = { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) } ) | |
| 35 | 3 33 34 | sylancr | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( { 𝑋 } Sat∈ ( 𝐼 ∈𝑔 𝐽 ) ) = { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) } ) |
| 36 | 24 | fveq2d | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) = ( 2nd ‘ 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) ) |
| 37 | opex | ⊢ 〈 𝐼 , 𝐽 〉 ∈ V | |
| 38 | 25 37 | op2nd | ⊢ ( 2nd ‘ 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) = 〈 𝐼 , 𝐽 〉 |
| 39 | 36 38 | eqtrdi | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) = 〈 𝐼 , 𝐽 〉 ) |
| 40 | 39 | fveq2d | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) = ( 1st ‘ 〈 𝐼 , 𝐽 〉 ) ) |
| 41 | op1stg | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 1st ‘ 〈 𝐼 , 𝐽 〉 ) = 𝐼 ) | |
| 42 | 40 41 | eqtrd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) = 𝐼 ) |
| 43 | 42 | fveq2d | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) = ( 𝑎 ‘ 𝐼 ) ) |
| 44 | 39 | fveq2d | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) = ( 2nd ‘ 〈 𝐼 , 𝐽 〉 ) ) |
| 45 | op2ndg | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 2nd ‘ 〈 𝐼 , 𝐽 〉 ) = 𝐽 ) | |
| 46 | 44 45 | eqtrd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) = 𝐽 ) |
| 47 | 46 | fveq2d | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) = ( 𝑎 ‘ 𝐽 ) ) |
| 48 | 43 47 | eleq12d | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) ↔ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
| 49 | 48 | rabbidv | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) } = { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) } ) |
| 50 | 49 | 3adant3 | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) } = { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) } ) |
| 51 | elmapi | ⊢ ( 𝑎 ∈ ( { 𝑋 } ↑m ω ) → 𝑎 : ω ⟶ { 𝑋 } ) | |
| 52 | elirr | ⊢ ¬ 𝑋 ∈ 𝑋 | |
| 53 | fvconst | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 } ∧ 𝐼 ∈ ω ) → ( 𝑎 ‘ 𝐼 ) = 𝑋 ) | |
| 54 | 53 | 3ad2antr1 | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 } ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑎 ‘ 𝐼 ) = 𝑋 ) |
| 55 | fvconst | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 } ∧ 𝐽 ∈ ω ) → ( 𝑎 ‘ 𝐽 ) = 𝑋 ) | |
| 56 | 55 | 3ad2antr2 | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 } ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑎 ‘ 𝐽 ) = 𝑋 ) |
| 57 | 54 56 | eleq12d | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 } ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ↔ 𝑋 ∈ 𝑋 ) ) |
| 58 | 52 57 | mtbiri | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 } ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) ) → ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) |
| 59 | 58 | ex | ⊢ ( 𝑎 : ω ⟶ { 𝑋 } → ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
| 60 | 51 59 | syl | ⊢ ( 𝑎 ∈ ( { 𝑋 } ↑m ω ) → ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
| 61 | 60 | impcom | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑎 ∈ ( { 𝑋 } ↑m ω ) ) → ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) |
| 62 | 61 | ralrimiva | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ∀ 𝑎 ∈ ( { 𝑋 } ↑m ω ) ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) |
| 63 | rabeq0 | ⊢ ( { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) } = ∅ ↔ ∀ 𝑎 ∈ ( { 𝑋 } ↑m ω ) ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) | |
| 64 | 62 63 | sylibr | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) } = ∅ ) |
| 65 | 50 64 | eqtrd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → { 𝑎 ∈ ( { 𝑋 } ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) } = ∅ ) |
| 66 | 35 65 | eqtrd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( { 𝑋 } Sat∈ ( 𝐼 ∈𝑔 𝐽 ) ) = ∅ ) |
| 67 | 66 | eqeq1d | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( ( { 𝑋 } Sat∈ ( 𝐼 ∈𝑔 𝐽 ) ) = ( { 𝑋 } ↑m ω ) ↔ ∅ = ( { 𝑋 } ↑m ω ) ) ) |
| 68 | 23 67 | bitrd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ( { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 ) ↔ ∅ = ( { 𝑋 } ↑m ω ) ) ) |
| 69 | 19 68 | mtbird | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉 ) → ¬ { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 ) ) |