This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prv1n | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. { X } |= ( I e.g J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( _om X. { X } ) = ( _om X. { X } ) |
|
| 2 | omex | |- _om e. _V |
|
| 3 | snex | |- { X } e. _V |
|
| 4 | 2 3 | xpex | |- ( _om X. { X } ) e. _V |
| 5 | eqeq1 | |- ( a = ( _om X. { X } ) -> ( a = ( _om X. { X } ) <-> ( _om X. { X } ) = ( _om X. { X } ) ) ) |
|
| 6 | 4 5 | spcev | |- ( ( _om X. { X } ) = ( _om X. { X } ) -> E. a a = ( _om X. { X } ) ) |
| 7 | 1 6 | mp1i | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> E. a a = ( _om X. { X } ) ) |
| 8 | 3 2 | pm3.2i | |- ( { X } e. _V /\ _om e. _V ) |
| 9 | elmapg | |- ( ( { X } e. _V /\ _om e. _V ) -> ( a e. ( { X } ^m _om ) <-> a : _om --> { X } ) ) |
|
| 10 | 8 9 | mp1i | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a e. ( { X } ^m _om ) <-> a : _om --> { X } ) ) |
| 11 | fconst2g | |- ( X e. V -> ( a : _om --> { X } <-> a = ( _om X. { X } ) ) ) |
|
| 12 | 11 | 3ad2ant3 | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a : _om --> { X } <-> a = ( _om X. { X } ) ) ) |
| 13 | 10 12 | bitrd | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a e. ( { X } ^m _om ) <-> a = ( _om X. { X } ) ) ) |
| 14 | 13 | exbidv | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( E. a a e. ( { X } ^m _om ) <-> E. a a = ( _om X. { X } ) ) ) |
| 15 | 7 14 | mpbird | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> E. a a e. ( { X } ^m _om ) ) |
| 16 | neq0 | |- ( -. ( { X } ^m _om ) = (/) <-> E. a a e. ( { X } ^m _om ) ) |
|
| 17 | 15 16 | sylibr | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( { X } ^m _om ) = (/) ) |
| 18 | eqcom | |- ( ( { X } ^m _om ) = (/) <-> (/) = ( { X } ^m _om ) ) |
|
| 19 | 17 18 | sylnib | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. (/) = ( { X } ^m _om ) ) |
| 20 | ovex | |- ( I e.g J ) e. _V |
|
| 21 | 3 20 | pm3.2i | |- ( { X } e. _V /\ ( I e.g J ) e. _V ) |
| 22 | prv | |- ( ( { X } e. _V /\ ( I e.g J ) e. _V ) -> ( { X } |= ( I e.g J ) <-> ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) ) ) |
|
| 23 | 21 22 | mp1i | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } |= ( I e.g J ) <-> ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) ) ) |
| 24 | goel | |- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) = <. (/) , <. I , J >. >. ) |
|
| 25 | 0ex | |- (/) e. _V |
|
| 26 | 25 | snid | |- (/) e. { (/) } |
| 27 | 26 | a1i | |- ( ( I e. _om /\ J e. _om ) -> (/) e. { (/) } ) |
| 28 | opelxpi | |- ( ( I e. _om /\ J e. _om ) -> <. I , J >. e. ( _om X. _om ) ) |
|
| 29 | 27 28 | opelxpd | |- ( ( I e. _om /\ J e. _om ) -> <. (/) , <. I , J >. >. e. ( { (/) } X. ( _om X. _om ) ) ) |
| 30 | 24 29 | eqeltrd | |- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( { (/) } X. ( _om X. _om ) ) ) |
| 31 | fmla0xp | |- ( Fmla ` (/) ) = ( { (/) } X. ( _om X. _om ) ) |
|
| 32 | 30 31 | eleqtrrdi | |- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( Fmla ` (/) ) ) |
| 33 | 32 | 3adant3 | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( I e.g J ) e. ( Fmla ` (/) ) ) |
| 34 | satefvfmla0 | |- ( ( { X } e. _V /\ ( I e.g J ) e. ( Fmla ` (/) ) ) -> ( { X } SatE ( I e.g J ) ) = { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } ) |
|
| 35 | 3 33 34 | sylancr | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } SatE ( I e.g J ) ) = { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } ) |
| 36 | 24 | fveq2d | |- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( I e.g J ) ) = ( 2nd ` <. (/) , <. I , J >. >. ) ) |
| 37 | opex | |- <. I , J >. e. _V |
|
| 38 | 25 37 | op2nd | |- ( 2nd ` <. (/) , <. I , J >. >. ) = <. I , J >. |
| 39 | 36 38 | eqtrdi | |- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( I e.g J ) ) = <. I , J >. ) |
| 40 | 39 | fveq2d | |- ( ( I e. _om /\ J e. _om ) -> ( 1st ` ( 2nd ` ( I e.g J ) ) ) = ( 1st ` <. I , J >. ) ) |
| 41 | op1stg | |- ( ( I e. _om /\ J e. _om ) -> ( 1st ` <. I , J >. ) = I ) |
|
| 42 | 40 41 | eqtrd | |- ( ( I e. _om /\ J e. _om ) -> ( 1st ` ( 2nd ` ( I e.g J ) ) ) = I ) |
| 43 | 42 | fveq2d | |- ( ( I e. _om /\ J e. _om ) -> ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) = ( a ` I ) ) |
| 44 | 39 | fveq2d | |- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( 2nd ` ( I e.g J ) ) ) = ( 2nd ` <. I , J >. ) ) |
| 45 | op2ndg | |- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` <. I , J >. ) = J ) |
|
| 46 | 44 45 | eqtrd | |- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( 2nd ` ( I e.g J ) ) ) = J ) |
| 47 | 46 | fveq2d | |- ( ( I e. _om /\ J e. _om ) -> ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) = ( a ` J ) ) |
| 48 | 43 47 | eleq12d | |- ( ( I e. _om /\ J e. _om ) -> ( ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) <-> ( a ` I ) e. ( a ` J ) ) ) |
| 49 | 48 | rabbidv | |- ( ( I e. _om /\ J e. _om ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } ) |
| 50 | 49 | 3adant3 | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } ) |
| 51 | elmapi | |- ( a e. ( { X } ^m _om ) -> a : _om --> { X } ) |
|
| 52 | elirr | |- -. X e. X |
|
| 53 | fvconst | |- ( ( a : _om --> { X } /\ I e. _om ) -> ( a ` I ) = X ) |
|
| 54 | 53 | 3ad2antr1 | |- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( a ` I ) = X ) |
| 55 | fvconst | |- ( ( a : _om --> { X } /\ J e. _om ) -> ( a ` J ) = X ) |
|
| 56 | 55 | 3ad2antr2 | |- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( a ` J ) = X ) |
| 57 | 54 56 | eleq12d | |- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( ( a ` I ) e. ( a ` J ) <-> X e. X ) ) |
| 58 | 52 57 | mtbiri | |- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> -. ( a ` I ) e. ( a ` J ) ) |
| 59 | 58 | ex | |- ( a : _om --> { X } -> ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( a ` I ) e. ( a ` J ) ) ) |
| 60 | 51 59 | syl | |- ( a e. ( { X } ^m _om ) -> ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( a ` I ) e. ( a ` J ) ) ) |
| 61 | 60 | impcom | |- ( ( ( I e. _om /\ J e. _om /\ X e. V ) /\ a e. ( { X } ^m _om ) ) -> -. ( a ` I ) e. ( a ` J ) ) |
| 62 | 61 | ralrimiva | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> A. a e. ( { X } ^m _om ) -. ( a ` I ) e. ( a ` J ) ) |
| 63 | rabeq0 | |- ( { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } = (/) <-> A. a e. ( { X } ^m _om ) -. ( a ` I ) e. ( a ` J ) ) |
|
| 64 | 62 63 | sylibr | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } = (/) ) |
| 65 | 50 64 | eqtrd | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = (/) ) |
| 66 | 35 65 | eqtrd | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } SatE ( I e.g J ) ) = (/) ) |
| 67 | 66 | eqeq1d | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) <-> (/) = ( { X } ^m _om ) ) ) |
| 68 | 23 67 | bitrd | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } |= ( I e.g J ) <-> (/) = ( { X } ^m _om ) ) ) |
| 69 | 19 68 | mtbird | |- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. { X } |= ( I e.g J ) ) |