This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem13.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| Assertion | prtlem13 | ⊢ ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem13.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | vex | ⊢ 𝑤 ∈ V | |
| 4 | elequ2 | ⊢ ( 𝑢 = 𝑣 → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑣 ) ) | |
| 5 | elequ2 | ⊢ ( 𝑢 = 𝑣 → ( 𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑣 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ( 𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣 ) ) ) |
| 7 | 6 | cbvrexvw | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣 ) ) |
| 8 | elequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣 ) ) | |
| 9 | elequ1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣 ) ) | |
| 10 | 8 9 | bi2anan9 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 11 | 10 | rexbidv | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ∃ 𝑣 ∈ 𝐴 ( 𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 12 | 7 11 | bitrid | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 13 | 2 3 12 1 | braba | ⊢ ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |