This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| Assertion | prtex | ⊢ ( Prt 𝐴 → ( ∼ ∈ V ↔ 𝐴 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| 2 | 1 | prter1 | ⊢ ( Prt 𝐴 → ∼ Er ∪ 𝐴 ) |
| 3 | erexb | ⊢ ( ∼ Er ∪ 𝐴 → ( ∼ ∈ V ↔ ∪ 𝐴 ∈ V ) ) | |
| 4 | 2 3 | syl | ⊢ ( Prt 𝐴 → ( ∼ ∈ V ↔ ∪ 𝐴 ∈ V ) ) |
| 5 | uniexb | ⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) | |
| 6 | 4 5 | bitr4di | ⊢ ( Prt 𝐴 → ( ∼ ∈ V ↔ 𝐴 ∈ V ) ) |