This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prtex , prter2 and prter3 . (Contributed by Rodolfo Medina, 14-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem13.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| Assertion | prtlem16 | ⊢ dom ∼ = ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem13.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | 2 | eldm | ⊢ ( 𝑧 ∈ dom ∼ ↔ ∃ 𝑤 𝑧 ∼ 𝑤 ) |
| 4 | 1 | prtlem13 | ⊢ ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑤 𝑧 ∼ 𝑤 ↔ ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 6 | elunii | ⊢ ( ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 8 | 7 | adantrr | ⊢ ( ( 𝑣 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑧 ∈ ∪ 𝐴 ) |
| 9 | 8 | rexlimiva | ⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 11 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) | |
| 12 | elequ1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣 ) ) | |
| 13 | 12 | anbi2d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) ) |
| 14 | pm4.24 | ⊢ ( 𝑧 ∈ 𝑣 ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) | |
| 15 | 13 14 | bitr4di | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ 𝑧 ∈ 𝑣 ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) ) |
| 17 | 2 16 | spcev | ⊢ ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 → ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 18 | 11 17 | sylbi | ⊢ ( 𝑧 ∈ ∪ 𝐴 → ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 19 | 10 18 | impbii | ⊢ ( ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ 𝑧 ∈ ∪ 𝐴 ) |
| 20 | 3 5 19 | 3bitri | ⊢ ( 𝑧 ∈ dom ∼ ↔ 𝑧 ∈ ∪ 𝐴 ) |
| 21 | 20 | eqriv | ⊢ dom ∼ = ∪ 𝐴 |