This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| Assertion | prter1 | ⊢ ( Prt 𝐴 → ∼ Er ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| 2 | 1 | relopabiv | ⊢ Rel ∼ |
| 3 | 2 | a1i | ⊢ ( Prt 𝐴 → Rel ∼ ) |
| 4 | 1 | prtlem16 | ⊢ dom ∼ = ∪ 𝐴 |
| 5 | 4 | a1i | ⊢ ( Prt 𝐴 → dom ∼ = ∪ 𝐴 ) |
| 6 | prtlem15 | ⊢ ( Prt 𝐴 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑧 ∈ 𝑟 ∧ 𝑝 ∈ 𝑟 ) ) ) | |
| 7 | 1 | prtlem13 | ⊢ ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 8 | 1 | prtlem13 | ⊢ ( 𝑤 ∼ 𝑝 ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) |
| 9 | 7 8 | anbi12i | ⊢ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) ↔ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) ) |
| 10 | reeanv | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) ↔ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) ) | |
| 11 | 9 10 | bitr4i | ⊢ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) ) |
| 12 | 1 | prtlem13 | ⊢ ( 𝑧 ∼ 𝑝 ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑧 ∈ 𝑟 ∧ 𝑝 ∈ 𝑟 ) ) |
| 13 | 6 11 12 | 3imtr4g | ⊢ ( Prt 𝐴 → ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) |
| 14 | pm3.22 | ⊢ ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) | |
| 15 | 14 | reximi | ⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → ∃ 𝑣 ∈ 𝐴 ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) |
| 16 | 1 | prtlem13 | ⊢ ( 𝑤 ∼ 𝑧 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) |
| 17 | 15 7 16 | 3imtr4i | ⊢ ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) |
| 18 | 13 17 | jctil | ⊢ ( Prt 𝐴 → ( ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) ∧ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) ) |
| 19 | 18 | alrimivv | ⊢ ( Prt 𝐴 → ∀ 𝑤 ∀ 𝑝 ( ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) ∧ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) ) |
| 20 | 19 | alrimiv | ⊢ ( Prt 𝐴 → ∀ 𝑧 ∀ 𝑤 ∀ 𝑝 ( ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) ∧ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) ) |
| 21 | dfer2 | ⊢ ( ∼ Er ∪ 𝐴 ↔ ( Rel ∼ ∧ dom ∼ = ∪ 𝐴 ∧ ∀ 𝑧 ∀ 𝑤 ∀ 𝑝 ( ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) ∧ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) ) ) | |
| 22 | 3 5 20 21 | syl3anbrc | ⊢ ( Prt 𝐴 → ∼ Er ∪ 𝐴 ) |