This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient set of the equivalence relation generated by a partition equals the partition itself. (Contributed by Rodolfo Medina, 17-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| Assertion | prter2 | ⊢ ( Prt 𝐴 → ( ∪ 𝐴 / ∼ ) = ( 𝐴 ∖ { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| 2 | rexcom4 | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ∃ 𝑧 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) | |
| 3 | r19.41v | ⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
| 5 | 2 4 | bitri | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
| 6 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) | |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
| 8 | vex | ⊢ 𝑝 ∈ V | |
| 9 | 8 | elqs | ⊢ ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ ∃ 𝑧 ∈ ∪ 𝐴 𝑝 = [ 𝑧 ] ∼ ) |
| 10 | df-rex | ⊢ ( ∃ 𝑧 ∈ ∪ 𝐴 𝑝 = [ 𝑧 ] ∼ ↔ ∃ 𝑧 ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) | |
| 11 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) | |
| 12 | 11 | anbi1i | ⊢ ( ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
| 14 | 10 13 | bitri | ⊢ ( ∃ 𝑧 ∈ ∪ 𝐴 𝑝 = [ 𝑧 ] ∼ ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
| 15 | 9 14 | bitri | ⊢ ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
| 16 | 5 7 15 | 3bitr4ri | ⊢ ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ ) |
| 17 | 1 | prtlem19 | ⊢ ( Prt 𝐴 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → 𝑣 = [ 𝑧 ] ∼ ) ) |
| 18 | 17 | ralrimivv | ⊢ ( Prt 𝐴 → ∀ 𝑣 ∈ 𝐴 ∀ 𝑧 ∈ 𝑣 𝑣 = [ 𝑧 ] ∼ ) |
| 19 | 2r19.29 | ⊢ ( ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑧 ∈ 𝑣 𝑣 = [ 𝑧 ] ∼ ∧ ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) ) | |
| 20 | 19 | ex | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑧 ∈ 𝑣 𝑣 = [ 𝑧 ] ∼ → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) ) ) |
| 21 | 18 20 | syl | ⊢ ( Prt 𝐴 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) ) ) |
| 22 | 16 21 | biimtrid | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) ) ) |
| 23 | eqtr3 | ⊢ ( ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) → 𝑣 = 𝑝 ) | |
| 24 | 23 | reximi | ⊢ ( ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) → ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ) |
| 25 | 24 | reximi | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ) |
| 26 | 22 25 | syl6 | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ) ) |
| 27 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑣 = 𝑝 ) ) | |
| 28 | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑣 = 𝑝 ) ↔ ( ∃ 𝑧 𝑧 ∈ 𝑣 ∧ 𝑣 = 𝑝 ) ) | |
| 29 | 27 28 | bitri | ⊢ ( ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ↔ ( ∃ 𝑧 𝑧 ∈ 𝑣 ∧ 𝑣 = 𝑝 ) ) |
| 30 | 29 | simprbi | ⊢ ( ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 → 𝑣 = 𝑝 ) |
| 31 | 30 | reximi | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 → ∃ 𝑣 ∈ 𝐴 𝑣 = 𝑝 ) |
| 32 | 26 31 | syl6 | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → ∃ 𝑣 ∈ 𝐴 𝑣 = 𝑝 ) ) |
| 33 | risset | ⊢ ( 𝑝 ∈ 𝐴 ↔ ∃ 𝑣 ∈ 𝐴 𝑣 = 𝑝 ) | |
| 34 | 32 33 | imbitrrdi | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → 𝑝 ∈ 𝐴 ) ) |
| 35 | 1 | prtlem400 | ⊢ ¬ ∅ ∈ ( ∪ 𝐴 / ∼ ) |
| 36 | nelelne | ⊢ ( ¬ ∅ ∈ ( ∪ 𝐴 / ∼ ) → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → 𝑝 ≠ ∅ ) ) | |
| 37 | 35 36 | mp1i | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → 𝑝 ≠ ∅ ) ) |
| 38 | 34 37 | jcad | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → ( 𝑝 ∈ 𝐴 ∧ 𝑝 ≠ ∅ ) ) ) |
| 39 | eldifsn | ⊢ ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ≠ ∅ ) ) | |
| 40 | 38 39 | imbitrrdi | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ) ) |
| 41 | neldifsn | ⊢ ¬ ∅ ∈ ( 𝐴 ∖ { ∅ } ) | |
| 42 | n0el | ⊢ ( ¬ ∅ ∈ ( 𝐴 ∖ { ∅ } ) ↔ ∀ 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ∃ 𝑧 𝑧 ∈ 𝑝 ) | |
| 43 | 41 42 | mpbi | ⊢ ∀ 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ∃ 𝑧 𝑧 ∈ 𝑝 |
| 44 | 43 | rspec | ⊢ ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) → ∃ 𝑧 𝑧 ∈ 𝑝 ) |
| 45 | eldifi | ⊢ ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) → 𝑝 ∈ 𝐴 ) | |
| 46 | 44 45 | jca | ⊢ ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) → ( ∃ 𝑧 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) ) |
| 47 | 1 | prtlem19 | ⊢ ( Prt 𝐴 → ( ( 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝑝 ) → 𝑝 = [ 𝑧 ] ∼ ) ) |
| 48 | 47 | ancomsd | ⊢ ( Prt 𝐴 → ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 = [ 𝑧 ] ∼ ) ) |
| 49 | elunii | ⊢ ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) | |
| 50 | 48 49 | jca2r | ⊢ ( Prt 𝐴 → ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) ) |
| 51 | prtlem11 | ⊢ ( 𝑝 ∈ V → ( 𝑧 ∈ ∪ 𝐴 → ( 𝑝 = [ 𝑧 ] ∼ → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) ) | |
| 52 | 51 | elv | ⊢ ( 𝑧 ∈ ∪ 𝐴 → ( 𝑝 = [ 𝑧 ] ∼ → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
| 53 | 52 | imp | ⊢ ( ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) |
| 54 | 50 53 | syl6 | ⊢ ( Prt 𝐴 → ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
| 55 | 54 | eximdv | ⊢ ( Prt 𝐴 → ( ∃ 𝑧 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑧 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
| 56 | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) ↔ ( ∃ 𝑧 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) ) | |
| 57 | 19.9v | ⊢ ( ∃ 𝑧 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) | |
| 58 | 55 56 57 | 3imtr3g | ⊢ ( Prt 𝐴 → ( ( ∃ 𝑧 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
| 59 | 46 58 | syl5 | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
| 60 | 40 59 | impbid | ⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ) ) |
| 61 | 60 | eqrdv | ⊢ ( Prt 𝐴 → ( ∪ 𝐴 / ∼ ) = ( 𝐴 ∖ { ∅ } ) ) |